Generalized inverses of operators on Hilbert C^* -modules

Dragan S. Djordjević

November 22, 2012

Let A be a C^* -algebra and let \mathcal{M} be a right A-module. This means that $(\mathcal{M}, +)$ is an Abelian group, and there exists an exterior multiplication: if $x \in \mathcal{M}$ and $a \in A$, then $x \cdot a \in \mathcal{M}$. This multiplication satisfies the same axioms as the scalar multiplication in vector spaces.

Additionally, if A does not have the unit, we assume that the scalar multiplication of elements in \mathcal{M} exists. If $\lambda \in \mathbb{C}$ and $x \in \mathcal{M}$, then we write equivalently $x\lambda = \lambda x \in \mathcal{M}$. If A has the unit, then the scalar multiplication follows easily from the multiplication by elements of A.

Definition 0.1. Let \mathcal{M} be a module over a C^* -algebra A. Suppose that there exists an A-valued inner product $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to A$, satisfying the following:

(1) $\langle x, x \rangle \ge 0$ in A for all $x \in \mathcal{M}$;

(2) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in \mathcal{M}$;

(3) $\langle x, ya \rangle = \langle x, y \rangle a$ for all $x, y \in \mathcal{M}$ and all $z \in A$.

Then \mathcal{M} is a Hilbert pre-module over A.

Definition 0.2. If M is a pre-Hilbert module over A, and \mathcal{M} is complete with respect to the norm $\|\cdot\|_{\mathcal{M}}$, then \mathcal{M} is a Hilbert C^* -module over A, or \mathcal{M} is a Hilbert C^* A-module.

Example 0.1. If A is a C^{*}-algebra, then A is itself a Hilbert module, since the inner product is given by $\langle a, b \rangle = a^*b$ for all $a, b \in A$.

More generally, let J be a right ideal of A. Then J is a Hilbert module over A, if the inner product is given by $\langle a, b \rangle = a^*b$.

Example 0.2. Let $M^{m \times n}$ denotes the set of all complex matrices of the form $m \times n$. Then $A^{m \times n}$ is a right $M^{n \times n}$ -module. The norm $\|.\|$ can be defined as $\|A\|_{A^{m \times n}} = \|AA^*\|$.

On the other hand, we can consider $A^{m \times n}$ as a left $A^{m \times m}$ -module, and the natural norm is defined as $||A||_{A^{m \times n}} = ||A^*A||$.

We know that both norms are the same!

Let \mathcal{M}, \mathcal{N} be Hilbert C^* -modules over a C^* -algebra A. A mapping $T : \mathcal{M} \to \mathcal{N}$ is called *operator* if T is a bounded \mathbb{C} -linear A-homomorphism from \mathcal{M} to \mathcal{N} , i.e. T satisfies:

$$T(x+y) = T(x) + T(y), \ T(\lambda x) = \lambda T(x), \ T(xa) = T(x)a, \quad x, y \in \mathcal{M}, \ a \in A, \ \lambda \in \mathbb{C},$$

and there exists some $M \ge 0$ such that

$$||T(x)||_{\mathcal{M}} \le M ||x||_{\mathcal{N}}, \ x \in \mathcal{M}.$$

The norm of T is given by

$$||T|| = \inf\{M \ge 0 : ||T(x)||_{\mathcal{M}} \le M ||x||_{\mathcal{N}}, \text{ for all } x \in \mathcal{M}\}.$$

The set of all operators from \mathcal{M} to \mathcal{N} is denoted by $\operatorname{Hom}_A(\mathcal{M}, \mathcal{N})$. Particularly, $\operatorname{End}_A(\mathcal{M}) = \operatorname{Hom}_A(\mathcal{M}, \mathcal{M})$.

Lemma 0.1. End_A(\mathcal{M}) is a Banach algebra.

We shall see that the question of adjoint operators is not trivial.

Lemma 0.2. Let \mathcal{M} be a Hilbert A-module, and let $T : \mathcal{M} \to \mathcal{M}$ and $T^* : \mathcal{M} \to \mathcal{M}$ be A-linear mappings such that

$$\langle x, Ty \rangle = \langle T^*x, y \rangle$$
 for all $x, y \in \mathcal{M}$.

Then $T, T^* \in \operatorname{End}_A(\mathcal{M})$.

Definition 0.3. An operator $T \in \text{Hom}_A(\mathcal{M}, \mathcal{N})$ is adjointable, if there exists and operator $T^* \in \text{Hom}_A(\mathcal{N}, \mathcal{M})$ such that for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$ the following holds:

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

There exists operators that are not adjointable.

The set of all adjointable operators from \mathcal{M} to \mathcal{N} is denoted by $\operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$. We see that $\operatorname{End}_{A}^{*}(\mathcal{M})$ is a C^{*} -algebra.

Theorem 0.1. For $T \in \text{End}^*_A(\mathcal{M})$ the following conditions are equivalent:

(1) T is a positive element in the C^* -algebra $\operatorname{End}^*_A(\mathcal{M})$;

(2) For all $x \in \mathcal{M}$ the element Tx is positive in the C^* -algebra A.

Theorem 0.2. Let $T : \mathcal{M} \to \mathcal{N}$ be a linear map. Then the following statements are equivalent:

(1) T is bounded and A-homomorphism;

(2) There exists a constant $K \ge 0$ such that the inequality $\langle Tx, Tx \rangle \le K \langle x, x \rangle$ holds in A for all $x \in \mathcal{M}$.

Lemma 0.3. Let A be a unital C^{*}-algebra and let $r : A \to A$ be a linear map such that for some constant $K \ge 0$ the inequality $r(a)^*r(a) \le Ka^*a$ holds for all $a \in A$. Then r(a) = r(1)a for all $a \in A$.

Example 0.3. Let $\mathcal{M} = \mathcal{N} \oplus \mathcal{L}$ be the orthogonal decomposition of Hilbert modules. Define $P : \mathcal{M} \to \mathcal{M}$ to be the projection from \mathcal{M} onto \mathcal{N} parallel to \mathcal{L} . Then P is bounded, ||P|| = 1 and $P^* = P$. Hence, $P \in \operatorname{End}_A^*(\mathcal{M})$.

Theorem 0.3. (Misčenko) Let \mathcal{M}, \mathcal{N} be Hilbert A-modules, and let $T \in \operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$ such that R(T) is closed in \mathcal{N} . Then the following hold:

(1) N(T) is a complemented submodule of \mathcal{M} and $N(T)^{\perp} = R(T^*)$;

(2) R(T) is a complemented module of \mathcal{N} and $R(T)^{\perp} = N(T^*)$;

(3) T^* also has a closed range.

Let \mathcal{M}, \mathcal{N} be Hilbert modules, and let $T \in \operatorname{Hom}_A(\mathcal{M}, \mathcal{N})$, or $T \in \operatorname{Hom}_A^*(\mathcal{M}, \mathcal{N})$. T is generalized invertible, if there exists some $T_1 \in \operatorname{Hom}(\mathcal{N}, \mathcal{M})$ such that $TT_1T = T$.

We can also require that S satisfies all Penrose equations, in order to obtain the Moore-Penrose inverse of T.

Outer inverse with prescribed range and null-module:

Let $T \in \operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$, and let K and H be submodules of \mathcal{M} and \mathcal{N} , respectively. Find $U \in \operatorname{Hom}_{A}(\mathcal{N}, \mathcal{M})$ such that the following hold:

$$UTU = U, \ R(U) = K, \ N(U) = H.$$

If such U exists, then $U = T_{K,H}^{(2)}$. Equivalent conditions (Xu, Zhang):

$$\mathcal{N} = A(K) \oplus H, \ N(T) \cap K = \{0\}, \ \mathcal{M} = T^*(H^{\perp}) \oplus K^{\perp}), \ N(T^*) \cap H^{\perp} = \{0\}.$$

The notion for the commutators follows: [U, V] = UV - VU, for appropriate choice of operators U and V.

Let $\mathcal{M}, \mathcal{N}, \mathcal{L}$ be Hilbert modules, and let $A \in \text{Hom}^*(\mathcal{N}, \mathcal{L})$ and $B \in \text{Hom}^*(\mathcal{M}, \mathcal{N})$ have closed ranges, such that AB also has a closed range. Find necessary and sufficient conditions such that the reverse order law holds:

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}.$$

A new result follows.

Theorem 0.4. If $A \in \text{Hom}^*(\mathcal{N}, \mathcal{L})$, $B \in \text{Hom}^*(\mathcal{M}, \mathcal{N})$ and $AB \in \text{Hom}^*(\mathcal{M}, \mathcal{N})$ have closed ranges, then the following statements are equivalent:

- (1) $(AB)^{\dagger} = B^{\dagger}A^{\dagger};$
- (2) $[A^{\dagger}A, BB^{*}] = 0$ and $[A^{*}A, BB^{\dagger}] = 0$;
- (3) $R(A^*AB) \subset R(B)$ and $R(BB^*A^*) \subset R(A^*)$;
- (4) A*ABB* has a commuting Moore-Penrose inverse.