Generalized inverses of operators on Hilbert C^{*}-modules

Dragan S. Djordjević

November 22, 2012

Let A be a C^{*}-algebra and let \mathcal{M} be a right A-module. This means that $(\mathcal{M},+)$ is an Abelian group, and there exists an exterior multiplication: if $x \in \mathcal{M}$ and $a \in A$, then $x \cdot a \in \mathcal{M}$. This multiplication satisfies the same axioms as the scalar multiplication in vector spaces.

Additionally, if A does not have the unit, we assume that the scalar multiplication of elements in \mathcal{M} exists. If $\lambda \in \mathbb{C}$ and $x \in \mathcal{M}$, then we write equivalently $x \lambda=$ $\lambda x \in \mathcal{M}$. If A has the unit, then the scalar multiplication follows easily from the multiplication by elements of A.

Definition 0.1. Let \mathcal{M} be a module over a C^{*}-algebra A. Suppose that there exists an A-valued inner product $\langle\cdot, \cdot\rangle: \mathcal{M} \times \mathcal{M} \rightarrow A$, satisfying the following:
(1) $\langle x, x\rangle \geq 0$ in A for all $x \in \mathcal{M}$;
(2) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for all $x, y \in \mathcal{M}$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in \mathcal{M}$ and all $z \in A$.

Then \mathcal{M} is a Hilbert pre-module over A.
Definition 0.2. If M is a pre-Hilbert module over A, and \mathcal{M} is complete with respect to the norm $\|\cdot\|_{\mathcal{M}}$, then \mathcal{M} is a Hilbert C^{*}-module over A, or \mathcal{M} is a Hilbert $C^{*} A$-module.

Example 0.1. If A is a C^{*}-algebra, then A is itself a Hilbert module, since the inner product is given by $\langle a, b\rangle=a^{*} b$ for all $a, b \in A$.

More generally, let J be a right ideal of A. Then J is a Hilbert module over A, if the inner product is given by $\langle a, b\rangle=a^{*} b$.

Example 0.2. Let $M^{m \times n}$ denotes the set of all complex matrices of the form $m \times n$. Then $A^{m \times n}$ is a right $M^{n \times n}$-module. The norm $\|$.$\| can be defined as \|A\|_{A^{m \times n}}=$ $\left\|A A^{*}\right\|$.

On the other hand, we can consider $A^{m \times n}$ as a left $A^{m \times m}$-module, and the natural norm is defined as $\|A\|_{A^{m \times n}}=\left\|A^{*} A\right\|$.

We know that both norms are the same!

Let \mathcal{M}, \mathcal{N} be Hilbert C^{*}-modules over a C^{*}-algebra A. A mapping $T: \mathcal{M} \rightarrow \mathcal{N}$ is called operator if T is a bounded \mathbb{C}-linear A-homomorphism from \mathcal{M} to \mathcal{N}, i.e. T satisfies:
$T(x+y)=T(x)+T(y), T(\lambda x)=\lambda T(x), T(x a)=T(x) a, \quad x, y \in \mathcal{M}, a \in A, \lambda \in \mathbb{C}$, and there exists some $M \geq 0$ such that

$$
\|T(x)\|_{\mathcal{M}} \leq M\|x\|_{\mathcal{N}}, x \in \mathcal{M} .
$$

The norm of T is given by

$$
\|T\|=\inf \left\{M \geq 0:\|T(x)\|_{\mathcal{M}} \leq M\|x\|_{\mathcal{N}}, \text { for all } x \in \mathcal{M}\right\}
$$

The set of all operators from \mathcal{M} to \mathcal{N} is denoted by $\operatorname{Hom}_{A}(\mathcal{M}, \mathcal{N})$. Particularly, $\operatorname{End}_{A}(\mathcal{M})=\operatorname{Hom}_{A}(\mathcal{M}, \mathcal{M})$.

Lemma 0.1. $\operatorname{End}_{A}(\mathcal{M})$ is a Banach algebra.
We shall see that the question of adjoint operators is not trivial.
Lemma 0.2. Let \mathcal{M} be a Hilbert A-module, and let $T: \mathcal{M} \rightarrow \mathcal{M}$ and $T^{*}: \mathcal{M} \rightarrow \mathcal{M}$ be A-linear mappings such that

$$
\langle x, T y\rangle=\left\langle T^{*} x, y\right\rangle \quad \text { for all } x, y \in \mathcal{M} .
$$

Then $T, T^{*} \in \operatorname{End}_{A}(\mathcal{M})$.
Definition 0.3. An operator $T \in \operatorname{Hom}_{A}(\mathcal{M}, \mathcal{N})$ is adjointable, if there exists and operator $T^{*} \in \operatorname{Hom}_{A}(\mathcal{N}, \mathcal{M})$ such that for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$ the following holds:

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle .
$$

There exists operators that are not adjointable.
The set of all adjointable operators from \mathcal{M} to \mathcal{N} is denoted by $\operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$. We see that $\operatorname{End}_{A}^{*}(\mathcal{M})$ is a C^{*}-algebra.

Theorem 0.1. For $T \in \operatorname{End}_{A}^{*}(\mathcal{M})$ the following conditions are equivalent:
(1) T is a positive element in the C^{*}-algebra $\operatorname{End}_{A}^{*}(\mathcal{M})$;
(2) For all $x \in \mathcal{M}$ the element $T x$ is positive in the C^{*}-algebra A.

Theorem 0.2. Let $T: \mathcal{M} \rightarrow \mathcal{N}$ be a linear map. Then the following statements are equivalent:
(1) T is bounded and A-homomorphism;
(2) There exists a constant $K \geq 0$ such that the inequality $\langle T x, T x\rangle \leq K\langle x, x\rangle$ holds in A for all $x \in \mathcal{M}$.

Lemma 0.3. Let A be a unital C^{*}-algebra and let $r: A \rightarrow A$ be a linear map such that for some constant $K \geq 0$ the inequality $r(a)^{*} r(a) \leq K a^{*} a$ holds for all $a \in A$. Then $r(a)=r(1) a$ for all $a \in A$.

Example 0.3. Let $\mathcal{M}=\mathcal{N} \oplus \mathcal{L}$ be the orthogonal decomposition of Hilbert modules. Define $P: \mathcal{M} \rightarrow \mathcal{M}$ to be the projection from \mathcal{M} onto \mathcal{N} parallel to \mathcal{L}. Then P is bounded, $\|P\|=1$ and $P^{*}=P$. Hence, $P \in \operatorname{End}_{A}^{*}(\mathcal{M})$.

Theorem 0.3. (Misčenko) Let \mathcal{M}, \mathcal{N} be Hilbert A-modules, and let $T \in \operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$ such that $R(T)$ is closed in \mathcal{N}. Then the following hold:
(1) $N(T)$ is a complemented submodule of \mathcal{M} and $N(T)^{\perp}=R\left(T^{*}\right)$;
(2) $R(T)$ is a complemented module of \mathcal{N} and $R(T)^{\perp}=N\left(T^{*}\right)$;
(3) T^{*} also has a closed range.

Let \mathcal{M}, \mathcal{N} be Hilbert modules, and let $T \in \operatorname{Hom}_{A}(\mathcal{M}, \mathcal{N})$, or $T \in \operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$. T is generalized invertible, if there exists some $T_{1} \in \operatorname{Hom}(\mathcal{N}, \mathcal{M})$ such that $T T_{1} T=T$.

We can also require that S satisfies all Penrose eqautions, in order to obtain the Moore-Penrose inverse of T.

Outer inverse with prescribed range and null-module:
Let $T \in \operatorname{Hom}_{A}^{*}(\mathcal{M}, \mathcal{N})$, and let K and H be submodules of \mathcal{M} and \mathcal{N}, respectively. Find $U \in \operatorname{Hom}_{A}(\mathcal{N}, \mathcal{M})$ such that the following hold:

$$
U T U=U, R(U)=K, N(U)=H
$$

If such U exists, then $U=T_{K, H}^{(2)}$.
Equivalent conditions (Xu, Zhang):

$$
\left.\mathcal{N}=A(K) \oplus H, N(T) \cap K=\{0\}, \mathcal{M}=T^{*}\left(H^{\perp}\right) \oplus K^{\perp}\right), N\left(T^{*}\right) \cap H^{\perp}=\{0\}
$$

The notion for the commutators follows: $[U, V]=U V-V U$, for appropriate choice of operators U and V.

Let $\mathcal{M}, \mathcal{N}, \mathcal{L}$ be Hilbert modules, and let $A \in \operatorname{Hom}^{*}(\mathcal{N}, \mathcal{L})$ and $B \in \operatorname{Hom}^{*}(\mathcal{M}, \mathcal{N})$ have closed ranges, such that $A B$ also has a closed range. Find necessary and sufficient conditions such that the reverse order law holds:

$$
(A B)^{\dagger}=B^{\dagger} A^{\dagger}
$$

A new result follows.

Theorem 0.4. If $A \in \operatorname{Hom}^{*}(\mathcal{N}, \mathcal{L}), B \in \operatorname{Hom}^{*}(\mathcal{M}, \mathcal{N})$ and $A B \in \operatorname{Hom}^{*}(\mathcal{M}, \mathcal{N})$ have closed ranges, then the following statements are equivalent:
(1) $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$;
(2) $\left[A^{\dagger} A, B B^{*}\right]=0$ and $\left[A^{*} A, B B^{\dagger}\right]=0$;
(3) $R\left(A^{*} A B\right) \subset R(B)$ and $R\left(B B^{*} A^{*}\right) \subset R\left(A^{*}\right)$;
(4) $A^{*} A B B^{*}$ has a commuting Moore-Penrose inverse.

