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PREFACE

The volume 13(21) of the Collection of Papers (Zbornik radova) with the title
Applications of Graph Spectra appeared in 2009 and was soon out of print. We
proposed to the Mathematical Institute of the Serbian Academy of Sciences and
Arts to publish a second edition, but the Editorial Board decided to publish a new
volume on the same subject with a similar title and with the same guest editors.
We have chosen the title Selected Topics on Applications of Graph Spectra
for the new volume.

The purpose of this volume and of the previous volume is to draw the attention
of the mathematical community to the rapidly growing applications of the theory
of graph spectra. Besides classical and well documented applications to Chemistry
and Physics, we are witnesses of the appearance of graph eigenvalues in Computer
Science in various investigations. There are also applications in several other fields
like Biology, Geography, Economics, and Social Sciences.

A part of the Preface to volume 13(21) is reproduced below.

The new volume contains improved, modified, and extended versions of all chap-
ters from volume 13(21) as well as the following two new chapters:

Spectral Techniques in Complex Networks (S. Gago),
Applications of Graph Spectra in Quantum Physics (D. Stevanovic).

The old chapters have been technically improved including the correction of no-
ticed typos and other mistakes. In addition the following changes have been made.

Applications of Graph Spectra: An Introduction to the Literature
(D. Cvetkovi¢). Some new references have been added and the presentation of
some parts is improved.

Multiprocessor Interconnection Networks (D. Cvetkovié, T. Davidovié).
New proofs of main theorems are given and the data for some interesting multipro-
cessor interconnection networks are better presented.

Hyperenergetic and Hypoenergetic Graphs (I. Gutman). This is a new
text, with a slight overlap to the chapter Selected Topics from the Theory of Graph
Energy: Hypoenergetic Graphs, (S. Majstorovié, A. Klobuc¢ar, I. Gutman), that
appeared in volume 13(21).

Nullity Of Graphs: An Updated Survey (I. Gutman, B. Borovi¢anin). The
chapter Nullity of Graphs, (I. Gutman, B. Borovic¢anin), is extended by surveying
a number of recently published results, and by updating the bibliography.

The Estrada Index: An Updated Survey (I. Gutman, H. Deng, S. Raden-
kovi¢). The chapter The Estrada Index, (H. Deng, S. Radenkovi¢, I. Gutman), is
extended by surveying a number of recently published results, and by updating the
bibliography.

For some more information on these Chapters see Preface to volume 13(21).

The new chapter by S. Gago is about networks with a great number of vertices
called complex networks. Most physical, biological, chemical, technological, and
social systems have a network structure. Examples of complex networks range



from cell biology to epidemiology or to the Internet. The rich information about
the topological structure and diffusion processes can be extracted from the spectral
analysis of the corresponding networks.

The new chapter by D. Stevanovi¢ explains that graph spectra are closely related
to many applications in quantum physics: a network of quantum particles with
fixed couplings can be modelled by an underlying graph, the Hamiltonian of such
system can be approximated either by the adjacency or the Laplacian matrix of
that graph, and then quite a few problems can be posed in terms of the eigenvalues
of the graph. One particular problem of interest to quantum physicists is addressed:
the existence of perfect state transfer in networks of spin —1/2 particles.
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FROM PREFACE TO VOLUME 13(21)

The purpose of this volume is to draw the attention of mathematical community
to rapidly growing applications of the theory of graph spectra. Besides classical and
well documented applications to Chemistry and Physics, we are witnesses of the ap-
pearance of graph eigenvalues in Computer Science in various investigations. There
are also applications in several other fields like Biology, Geography, Economics and
Social Sciences. A monograph with a comprehensive treatment of applications of
graphs spectra is missing at the present.

The present book contains five chapters: an introductory chapter with a survey
of applications by representative examples and four case studies (one in Computer
Science and three in Chemistry).

We quote particular chapters and indicate their contents.

Applications of Graph Spectra: An Introduction to the Literature
(D. Cvetkovié¢). This introductory text provides an introduction to the theory of
graph spectra and a short survey of applications of graph spectra. There are four
sections: 1. Basic notions, 2. Some results, 3. A survey of applications, 4. Selected
bibliographies on applications of the theory of graph spectra.

Multiprocessor Interconnection Networks (D. Cvetkovié, T. Davidovié).
Well-suited multiprocessor interconnection networks are described in terms of the
graph invariant called tightness which is defined as the product of the number
of distinct eigenvalues and maximum vertex degree. Load balancing problem is
presented.

Selected Topics from the Theory of Graph Energy: Hypoenergetic
Graphs (S. Majstorovié¢, A. Klobucar, I. Gutman). The energy E of a graph
G is the sum of the absolute values of the eigenvvalues of G. The motivation
for the introduction of this invariant comes from Chemistry, where results on E
were obtained already in the 1940’s. The chemical background of graph energy is
outlined in due detail. Then some fundamental results on F are given.

A graph G with n vertices is said to be “hypoenergetic” if E(G) < n. In the
main part of the chapter results on graph energy, pertaining to the inequalities
E(G) < n and E(G) > n are presented. Most of these were obtained in the last
few years.

Nullity of Graphs (B. Boroviéanin, I. Gutman). The nullity 7 of a graph G is
the multiplicity of the number zero in the spectrum of G. In the 1970s the nullity
of graphs was much studied in Chemistry, because for certain types of molecules,
1n = 0 is a necessary condition for chemical stability. The chemical background of
this result is explained in a way understandable to mathematicians. Then the main
early results on nullity are outlined.

In the last 5-10 years there is an increased interest to nullity in mathematics, and
some 10 papers on this topic appeared in the mathematical literature. All these
results are outlined too.

The Estrada Index (H. Deng, S. Radenkovié¢, I. Gutman). If \;,i =1,2,... ,n,
are the eigenvalues of the graph G, then the Estrada index EFF of G is the sum of



the terms exp(A;). This graph invariant appeared for the first time in year 2000,
in a paper by Ernesto Estrada, dealing with the folding of protein molecules. Since
then a remarkable number of other chemical and non-chemical applications of EE
were communicated.

The mathematical studies of the Estrada index started only a few years ago.
Until now a number of lower and upper bounds were obtained, and the problem of
extremal EFFE for trees solved. Also, a number of approximations and correlations
for EE were put forward, valid for chemically interesting molecular graphs.

All relevant results on the Estrada index are presented in the chapter.

Manuscripts have been submitted in January 2009 and revised in April 2009.

Belgrade and Kragujevac, 2009
Guest Editors:
Dragos Cvetkovié¢
Ivan Gutman
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APPLICATIONS OF GRAPH SPECTRA:
AN INTRODUCTION TO THE LITERATURE

Abstract. We give basic definitions and some results related to the
theory of graph spectra. We present a short survey of applications
of this theory. In addition, selected bibliographies on applications to
particular branches of science are given.
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This is an introductory chapter to our book. We start with basic definitions
and present some results from the theory of graph spectra. A short survey of
applications of this theory is presented. Selected bibliographies on applications to
particular branches of science are given in the sequel.

The plan of the chapter is as follows.

Section 1 presents basic definitions related to the theory of graph spectra. Some
selected results, which will bi used in other chapters, are given in Section 2. A
short survey of applications of graph eigenvalues is contained in Section 3. Section
4 contains selected bibliographies of books and papers which are related to appli-
cations of the theory of graph spectra in Chemistry, Physics, Computer Science,
Engineering, Biology and Economics.

1. Basic notions

A graph G = (V, E) consists of a finite non-empty set V' (the vertex set of G),
and a set F (of two elements subsets of V, the edge set of G). We also write V(G)
(E(@)) for the vertex (resp. edge) set of G. The number of elements in V(G),
denoted by n (= |V(G)|), is called the order of G. Usually, we shall assume that
V(G)={1,2,...,n}.

Let e;; be the edge connecting vertices ¢ and j. The set {€i, ;s €injas-- - Cirjx b
of distinct edges, such that i = iy, j1 = i2,j2 = i3,...,Jk = j, is called path (of
length k) connecting vertices i and j. The length of the shortest path connecting
i and j is called the distance between these two vertices. The maximum distance
between any two vertices in G is called the diameter of G, and it is denoted by D.
If there exists a path between any two vertices in G, then G is connected; otherwise
it is disconnected.
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Two vertices are called adjacent (or neighbors) if they are connected by an edge;
the corresponding relation between vertices is called the adjacency relation. The
number of neighbors of a vertex i, denoted by d;, is its vertex degree. The maximum
vertex degree (of G) is denoted by A. A graph in which all vertex degrees are equal
to r is regular of degree r (or r-regular, or just regular if r is unimportant).

The adjacency matriz A is used to represent the adjacency relation, and so the
graph G itself. The element a;; of the adjacency matrix A is equal to 1 if vertices
i and j are adjacent, and 0 otherwise.

The characteristic polynomial det(zl — A) of the adjacency matrix A (of G) is
called the characteristic polynomial of G, and is denoted by Pg(x). The eigenvalues
of A (i.e., the zeros of det(zI — A)), and the spectrum of A (which consists of the n
eigenvalues) are also called the eigenvalues and the spectrum of G, respectively. The

eigenvalues of G are usually denoted by A1, As, ..., A,; they are real because A is
symmetric. Unless we indicate otherwise, we shall assume that Ay > Ao > -+ > A\,
We also use the notation A\; = A\;(G) for i = 1,2,...,n. The largest eigenvalue, i.e.,

A1, is called the index of G.

If X is an eigenvalue of G, then a non-zero vector x € R", satisfying Ax = \x,
is called an eigenvector of A (or of the labeled graph G) for A; it is also called a
M-eigenvector. The relation Ax = Ax can be interpreted in the following way: if
x = (1,22,...,2,)7, then for any vertex u we have Az, = Y., _, Ty, where the
summation is over all neighbours v of u. If A is an eigenvalue of G, then the set
{x € R" : Ax = M\x} is a subspace of R", called the eigenspace of G for X; it is
denoted by £(X). Such eigenspaces are called eigenspaces of G.

For the index of G, since A is non-negative, there exists an eigenvector whose
all entries are non-negative.

Example. Let G be the graph shown in Fig. 1 together with its adjacency matrix.

—_
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FIGURE 1. An example
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The following vector x = (1, A\, A2 — 1, A3 — 2)\)T is a A-eigenvector of G. O

Besides the spectrum of the adjacency matrix of a graph G we shall consider
the spectrum of another matrix associated with G. The matrix L = D — A, where
D = diag(dy,ds, .. .,d,) is the diagonal matrix of vertex degrees, is known as the
Laplacian of G. The matrix L is positive semi-definite, and therefore its eigenval-
ues are non-negative. The least eigenvalue is always equal to 0; the second least
eigenvalue is also called the algebraic connectivity of of G [Fie].

The basic reference for the theory of graph spectra is the book [CvDSa]. Other
books on graph spectra include [CvDGT], [CvRS1], [CvRS3], [CvRS4]. For any
notion, not defined here, the reader is referred to [CvRS4] or [CvDSa).

As usual, K,,,C},, S, and P, denote respectively the complete graph, the cycle,
the star and the path on n vertices; Ky, », denotes the complete bipartite graph
on njy + ny vertices.

A tree is a connected graph without cycles. A connected graph with n vertices
and n edges is a unicyclic graph. It is called even (odd) if its unique cycle is even
(resp. odd). A dumbbell is the graph obtained from two disjoint cycles by joining
them by a path.

The complement of a graph G is denoted by G, while mG denotes the union of
m disjoint copies of G.

For v € V(G), G — v denotes the graph obtained from G by deleting v, and all
edges incident with it. More generally, for U C V(G), G — U is the subgraph of G
obtained from G by deleting all vertices from U and edges incident to at least one
vertex of U; we also say that Gy is induced by the vertex set V/(G) \ U.

The join G VH of (disjoint) graphs G and H is the graph obtained from G and
H by joining each vertex of G with each vertex of H. For any graph G, the cone
over G is the graph K;VG.

The line graph L(H) of any graph H is defined as follows. The vertices of
L(H) are the edges of H and two vertices of L(H) are adjacent whenever the
corresponding edges of H have a vertex of H in common.

A set of disjoint edges in a graph G is called a matching. A set of disjoint edges
which cover all vertices of the graph is called an 1-factor of G.

2. Some results

We present here some known results from the theory of graph spectra that will
be used in other chapters.

In graph theory and in the theory of graph spectra, some special types of graphs
are studied in detail and their characteristics are well known and summarized in
the literature (see, for example, [CvDSa]). Here, we will survey some of them.

Recall, K,, is a complete graph, i.e., a graph with each two vertices connected
by an edge (so, the number of edges is equal to (g)) The spectrum of K,, consists
of m = 2 distinct eigenvalues: Ay = n—1 which is a simple eigenvalue, and \; = —1
fori=2,...,n.

A path P, is a tree on n vertices (and n — 1 edges) without vertices of degree
greater than two. Two “ending” vertices (for n > 2) have degree one, while the rest



APPLICATIONS OF GRAPH SPECTRA: AN INTRODUCTION TO THE LITERATURE 13

of them (the internal vertices) have degree two. A spectral characteristic of paths
is that they have all distinct eigenvalues. In fact, the spectrum of P, consists of
the following eigenvalues: 2 cos nL_Hi, 1=1,2,...,n.

The C), is a 2-regular connected graph. It contains the following eigenvalues:
2cos2i, i =0,1,...,n— 1. It has m = [2] + 1 distinct eigenvalues. Here |z|
denotes the largest integer smaller than or equal to x.

The star S, is a tree having a vertex (central vertex) which is adjacent to all
remaining vertices (all of them being of degree one). Each star on n > 3 vertices
has m = 3 distinct eigenvalues. It contains the following eigenvalues: ++v/n —1
which are both simple, and \; = —1 fori =2,...,n — 1.

A complete bipartite graph K, », consists of n; + ng vertices divided into two
sets of the cardinalities n; and ns with the edges connecting each vertex from one
set to all the vertices in the other set. This means that the number of edges is
ningy. In particular, S, = K; ,—1. More generally, bipartite graphs consist of two
sets of vertices with the edges connecting a vertex from one set to a vertex in the
other set. The spectrum of K, », (for ny +ng > 3) also consists of m = 3 distinct
eigenvalues (simple eigenvalues +,/n1nz, and 0 of multiplicity n; + ng — 2).

In the theory of graph spectra an important role play the graphs with A\; = 2,
known as Smith graphs. They are well studied, and all of them are given in [CvDSa],
on Fig. 2.4, p. 79. There are 6 types of Smith graphs (namely, C,, (n > 3), W,
(n 2 6), Ss H7, Hg and Hy — see also Fig. 2). Four of them are concrete graphs Ss,
H7, Hg and Hy, while the remaining two types (cycles C,, and double-head snakes
W, of order n, can have an arbitrary number of vertices); in Fig. 2 we reproduce
those which are not cycles Cy,, nor the star S5 = K 4.

Wn
Hy
Hg Hy

FIGURE 2. Some Smith graphs

In our study we need also graphs with A; < 2. To obtain such graphs, it is
enough to study (connected) subgraphs of Smith graphs. By removing vertices
out of Smith graphs, we obtain paths P,, n = 2,3,...; single-head snakes Z,,
n = 4,5,..., given in the upper row of Fig. 3 up to n = 7; and the three other
graphs given in the second row of Fig. 3 and denoted by Fg, E7 and Eg. It is
enough to consider only one vertex removal; removing further vertices leads to the
graph already obtained in another way.
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Z4 Z5 Zﬁ Z7
Eg Er Eg

F1GURE 3. Subgraphs of some Smith graphs

By Theorem 3.13. from [CvDSa] for the diameter D of a graph G we have
(1) D<m—1,

where m is the number of distinct eigenvalues.
The largest eigenvalue A\ of G and the maximum vertex degree A are related in
the following way (cf. [CvDSa, p. 112 and p. 85]):

(2) VA <\ <A

A graph is called strongly reqular with parameters (n,r, e, f) if it has n vertices
and is r-regular, and if any two adjacent (non-adjacent) vertices have exactly e
(resp. f) common neighbors [CvDSa]. One can show that the number n of vertices
of a strongly regular graph is determined by the remaining three parameters. Note
that a complement of a strongly regular graph is also a strongly regular graph.
Usually, strongly regular graphs which are disconnected, or whose complements
are disconnected are excluded from considerations (trivial cases). Under this as-
sumption, the diameter of a strongly regular graph is always equal to 2, and also
it has 3 distinct eigenvalues.

A graph is called integral if its spectrum consists entirely of integers. Each
eigenvalue has integral eigenvectors and each eigenspace has a basis consisting of
such eigenvectors.

Graphs with a small number of distinct eigenvalues have attracted much atten-
tion in the research community.

The number of distinct eigenvalues of a graph is correlated with its symmetry
property [CvDSa]: the graphs with a small number of distinct eigenvalues are (very
frequently) highly symmetric. They also have a small diameter, what follows from
(1). Let m be the number of distinct eigenvalues of a graph G. Trivial cases are
m = 1and m = 2. If m = 1, all eigenvalues are equal to 0 and G consists of isolated
vertices. In the case m = 2 G consists of, say k > 1 copies of complete graphs on
s = 2 vertices (so the distinct eigenvalues are s — 1 (of multiplicity k) and —1 (of
multiplicity k(s — 1))).

Further, we shall consider only connected graphs. If m = 3 and G is regular,
then G is strongly regular (cf. [CvDSa, p. 108]). For example, the well known
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Petersen graph (see Fig. 4) is strongly regular with distinct eigenvalues 3,1, —2 of
multiplicities 1, 5, 4, respectively.

FIGURE 4. The Petersen graph

It is difficult to construct families of strongly regular graphs which contain graphs
for any number of vertices. It could be rather expected that one can find sporadic
examples with nice properties like it appears in the Petersen graph.

There are also some non-regular graphs with three distinct eigenvalues [Dam].
Such graphs usually have a vertex adjacent to all other vertices (like in stars), i.e.,
they are cones over some other graphs.

Several classes of regular graphs with four distinct eigenvalues are described in
[Dam], but the whole set has not been described yet.

3. A survey of applications

In this section we shall give a short survey of applications of the theory of graph
spectra.

The applications are numerous so that we cannot give a comprehensive survey in
limited space that we have at the disposal. We shall rather limit ourselves to review
representative examples of applications so that the reader can get an impression on
the situation but also to become able to use the literature.

The books [CvDSa], [CvDGT] contain each a chapter on applications of graph
eigenvalues.

The book [CvRS4] also contains a chapter on applications . There are sections
on Physics, Chemistry, Computer Sciences and Mathematics itself.

We shall first mention applications to Chemistry, Physics, Computer Sciences
and Mathematics itself (we devote a subsection of this section to each). Graph
spectra are used in many other branches of science including Biology, Geography,
Economics and Social Sciences and the fifth subsection contains some information
about that. In all fields we are forced to give only examples of applications.

3.1. Chemistry. Motivation for founding the theory of graph spectra has come
from applications in Chemistry and Physics.

The paper [Huc] is considered as the first paper where graph spectra appear
though in an implicit form. The first mathematical paper on graph spectra [CoSi]
was motivated by the membrane vibration problem i.e., by approximative solving
of partial differential equations.

One of the main applications of graph spectra to Chemistry is the application in
a theory of unsaturated conjugated hydrocarbons known as the Hiickel molecular
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orbital theory. Some basic facts of this theory are given at the beginning of the
chapter “Selected Topics from the Theory of Graph Energy” in this book.

More detail on the Hiickel molecular orbital theory the interested reader can find,
for example, in books [CvDSal, [Bal], [CoLM], [Dia], [GrGT], [Gut], [GuTr], [Tri].
For more references to the Hiickel theory as well as to other chemical applications
see Section 4.

Three separate chapters of this book are devoted to applications in Chemistry.

3.2. Physics. Treating the membrane vibration problem by approximative solving
of the corresponding partial differential equation leads to consideration of eigenval-
ues of a graph which is a discrete model of the membrane (see [CvDSa, Chapter 8]).

The spectra of graphs, or the spectra of certain matrices which are closely related
to adjacency matrices appear in a number of problems in statistical physics (see,
for example, [Kas|, [Mon], [Per]). We shall mention the so-called dimer problem.

The dimer problem is related to the investigation of the thermodynamic prop-
erties of a system of diatomic molecules (“dimers”) adsorbed on the surface of a
crystal. The most favorable points for the adsorption of atoms on such a surface
form a two-dimensional lattice, and a dimer can occupy two neighboring points.
It is necessary to count all ways in which dimers can be arranged on the lattice
without overlapping each other, so that every lattice point is occupied.

The dimer problem on a square lattice is equivalent to the problem of enumer-
ating all ways in which a chess-board of dimension n x n (n being even) can be
covered by %nQ dominoes, so that each domino covers two adjacent squares of the
chess-board and that all squares are so covered.

A graph can be associated with a given adsorption surface. The vertices of
the graph represent the points which are the most favorable for adsorption. Two
vertices are adjacent if and only if the corresponding points can be occupied by
a dimer. In this manner an arrangement of dimers on the surface determines a
1-factor in the corresponding graph, and vice versa. Thus, the dimer problem is
reduced to the task of determining the number of 1-factors in a graph. Enumera-
tion of 1-factors involves consideration of walks in corresponding graphs and graph
eigenvalues (see [CvDSa, Chapter 8]).

Not only the dimer problem but also some other problems can be reduced to
the enumeration of 1-factors (i.e. dimer arrangements). The best known is the
famous Ising problem arising in the theory of ferromagnetism (see, for example,
[Kas|, [Mon]).

The graph-walk problem is of interest in physics not only because of the 1-
factor enumeration problem. The numbers of walks of various kinds in a lattice
graph appear in several other problems: the random-walk and self-avoiding-walk
problems (see [Kas], [Mon]) are just two examples.

See also Chapter Applications of Graph Spectra in Quantum Physics.

3.3. Computer science. It was recognized in about last ten years that graph spec-
tra have several important applications in computer science. Graph spectra appear
in internet technologies, pattern recognition, computer vision and in many other
areas. Here we mention applications in treating some of these and other problems.
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(See Chapter Multiprocessor Interconnection Networks for applications in design-
ing multiprocessor interconnection topologies and Chapter Spectral Techniques in
Complex Networks for applications on Internet).

One of the oldest applications (from 1970’s) of graph eigenvalues in Computer
Science is related to graphs called expanders. Avoiding a formal definition, we
shall say that a graph has good expanding properties if each subset of the vertex
set of small cardinality has a set of neighbors of large cardinality. Expanders and
some related graphs (called enlargers, magnifiers, concentrators and superconcen-
trators, just to mention some specific terms) appear in treatment of several prob-
lems in Computer Science (for example, communication networks, error-correcting
codes, optimizing memory space, computing functions, sorting algorithms, etc.).
Expanders can be constructed from graphs with a small second largest eigenvalue
in modulus. Such class of graphs includes the so called Ramanujan graphs. For an
introduction to this type of applications see [CvSil] and references cited therein.
Paper [LuPS] is one of the most important papers concerning Ramanujan graphs.

Referring to the book [CvDSal as “the current standard work on algebraic graph
theory”, Van Mieghem gave in his book [Van] a twenty page appendix on graph
spectra, thus pointing out the importance of this subject for communications net-
works and systems.

The paper [Spi] is a tutorial on the basic facts of the theory of graph spectra and
its applications in computer science delivered at the 48th Annual IEEE Symposium
on Foundations of Computer Science.

The largest eigenvalue A; plays an important role in modelling virus propagation
in computer networks. The smaller the largest eigenvalue, the larger the robustness
of a network against the spread of viruses. In fact, it was shown in [WaCWF] that
the epidemic threshold in spreading viruses is proportional to 1/A;. Motivated by
this fact, the authors of [DaKo] determine graphs with minimal \; among graphs
with given numbers of vertices and edges, and having a given diameter.

Some data on using graph eigenvalues in studying Internet topology can be found
in [ChTr] and in the references cited therein.

Web search engines are based on eigenvectors of the adjacency and some related
graph matrices [BrPa, Kle].

The indexing structure of object appearing in computer vision (and in a wide
range of other domains such as linguistics and computational biology) may take
the form of a tree. An indexing mechanism that maps the structure of a tree into
a low-dimensional vector space using graph eigenvalues is developed in [ShDSZ].

Statistical databases are those that allow only statistical access to their records.
Individual values are typically deemed confidential and are not to be disclosed,
either directly or indirectly. Thus, users of a statistical database are restricted to
statistical types of queries, such as SUM, MIN, MAX, etc. Moreover, no sequence
of answered queries should enable a user to obtain any of the confidential individual
values. However, if a user is able to reveal a confidential individual value, the data-
base is said to be compromised. Statistical databases that cannot be compromised
are called secure.
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One can consider a restricted case where the query collection can be described
as a graph. Surprisingly, the results from [Bra, BrMS| show an amazing connection
between compromise-free query collections and graphs with least eigenvalue -2.
This connection was recognized in the paper [BraCv].

It is interesting to note that original Doob’s description [Doo| in 1973 of the
eigenspace of —2 in line graphs in terms of even cycles and odd dumbbells has been
extended to generalized line graphs by Cvetkovi¢, Doob and Simi¢ [CvDS] in 1981
in terms of the chain groups, not explicitly dealing with cycles and dumbbells. The
independent discovery of Brankovi¢, Miller and Siran [BrMS] in 1996 put implicitly
some light on the description of the eigenspace in generalized line graphs a bit
before Cvetkovi¢, Rowlinson and Simié in 2001 (the paper [CvRS2] was submitted
in 1998), using the star complement technique and without being aware of [BrMS],
gave the entire description of the eigenspace.

Another way to protect the privacy of personal data in databases is to randomize
the network representing relations between individuals by deleting some actual
edges and by adding some false edges in such a way that global characteristics
of the network are unchanged. This is achieved using eigenvalues of the adjacency
matrix (in particular, the largest one) and of the Laplacian (algebraic connectivity)
[YiWu].

Additional information on applications of graph spectra to Computer Science
can be found in [CvSi2]. These applications are classified there in the following
way:

—_

Expanders and combinatorial optimization,

Complex networks and the Internet,

Data mining,

Computer vision and pattern recognition,

Internet search,

Load balancing and multiprocessor interconnection networks,
Anti-virus protection versus spread of knowledge,

Statistical databases and social networks,

Quantum computing.

© 0N Ot W

3.4. Mathematics. There are many interactions between the theory of graph spec-
tra and other branches of mathematics. This applies, by definition, to linear al-
gebra. Another field which has much to do with graph spectra is combinatorial
optimization.

Combinatorial matriz theory studies matrices by the use of and together with
several digraphs which can be associated to matrices. Many results and techniques
from the theory of graph spectra can be applied for the foundations and develop-
ment of matrix theory. A combinatorial approach to the matrix theory is given in
the book [BrCv]. Particular topics, described in the book, include determinants,
systems of linear algebraic equations, sparse matrices, the Perron—Frobenius theory
of non-negative matrices, Markov chains and many others.
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Relations between eigenvalues of graphs and combinatorial optimization have
been known for last twenty years. The section titles of an excellent expository arti-
cle [MoPo] show that many problems in combinatorial optimization can be treated
using eigenvalues: 1. Introduction, 1.1. Matrices and eigenvalues of graphs; 2.
Partition problems; 2.1 Graph bisection, 2.2. Connectivity and separation, 2.3.
Isoperimetric numbers, 2.4. The maximum cut problem, 2.5. Clustering, 2.6.
Graph partition; 3. Ordering, 3.1. Bandwidth and min-p-sum problems, 3.2. Cut-
width, 3.3 Ranking, 3.4. Scaling, 3.5. The quadratic assignment problem; 4. Stable
sets and coloring, 4.1. Chromatic number, 4.2. Lower bounds on stable sets, 4.3.
Upper bounds on stable sets, 4.4. k-colorable subgraphs; 5. Routing problems, 5.1.
Diameter and the mean distance, 5.2. Routing, 5.3. Random walks; 6. Embed-
ding problems; A. Appendix: Computational aspects; B. Appendix: Eigenvalues of
random graphs. The paper [MoPo] contains a list of 135 references.

See [CvDSal, third edition, pp. 417-418, for further data and references.

The travelling salesman problem (TSP) is one of the best-known NP-hard com-
binatorial optimization problems, and there is an extensive literature on both its
theoretical and practical aspects. The most important theoretical results on TSP
can be found in [LaLRS], [GuPu] (see also [CvDM]). Many algorithms and heuris-
tics for TSP have been proposed. In the symmetric travelling salesman problem
(STSP), it is assumed that the cost of travelling between two points is the same in
both directions.

We shall mention here only one approach, which uses semi-definite programming
(SDP) to establish a lower bound on the length of an optimal tour. This bound
is obtained by relaxing the STSP and can be used in an algorithm of branch-and-
bound type. The semi-definite relaxations of the STSP developed in [CvCK1] are
based on a result of M. Fiedler [Fie] related to the Laplacian of graphs and algebraic
connectivity (the second smallest eigenvalue of the Laplacian).

A semi-definite programming model for the travelling salesman problem was also
obtained by Cvetkovi¢ et al. [CvCK2, CvCK3].

The largest eigenvalue of a minimal spanning tree of the complete weighted
graphs, with distances between cities serving as weights, can be used as a complexity
index for the travelling salesman problem [CvDM].

3.5. Other sciences. Networks appearing in biology have been analyzed by spec-
tra of normalized graph Laplacian in [Ban]|, [BaJo].

Research and development networks (R&D networks) are studied by the largest
eigenvalue of the adjacency matrix in [KoBNS1], [KoBNS2].

Some older references on applications of graph spectra to Geography and social
Sciences can be found in [CvDGT, Section 5.17].
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4. Selected bibliographies on applications of the theory of graph spectra

Subsections contain bibliographies related to Chemistry, Physics, Computer Sci-
ence, Engineering, Biology and Economics.

4.1. Chemistry. In this bibliography are included books and expository articles
that are either completely or to a significant extent concerned with some aspect(s)
of chemical applications of graph spectral theory. Some books and expository
articles in which graph—spectrum-related topics are mentioned only marginally (not
necessarily in an explicit manner) are also included; these are marked by [XX].

Original research papers concerned with chemical applications of graph spectral
theory are to numerous to be covered by this bibliography. Some of these papers,
of exceptional (mainly historical) relevance, are nevertheless included; these are
marked by [OR].
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Abstract. Homogeneous multiprocessor systems are usually modelled
by undirected graphs. Vertices of these graphs represent the proces-
sors, while edges denote the connection links between adjacent pro-
cessors. Let G be a graph with diameter D, maximum vertex degree
A, the largest eigenvalue A; and m distinct eigenvalues. The prod-
ucts mA and (D + 1)A; are called the tightness of G of the first and
second type, respectively. In the recent literature it was suggested
that graphs with a small tightness of the first type are good mod-
els for the multiprocessor interconnection networks. We study these
and some other types of tightness and some related graph invariants
and demonstrate their usefulness in the analysis of multiprocessor in-
terconnection networks. A survey of frequently used interconnection
networks is given. Load balancing problem is presented. We prove
that the number of connected graphs with a bounded tightness is
finite and we determine explicitly graphs with tightness values not
exceeding 9. There are 69 such graphs and they contain up to 10 ver-
tices. In addition we identify graphs with minimal tightness values
when the number of vertices is n = 2,...,10.
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1. Introduction

Usual models for multiprocessor interconnection networks [20] are (undirected,
connected) graphs [31, 33]. Vertices of these graphs represent the processors, while
edges denote the connection links between neighboring (adjacent) processors. The
processors within a multiprocessor system communicate by sending or receiving
messages through these communication links. The two main parameters of the
graph that play an important role in the design of multiprocessor topologies are
maximum vertex degree A and the diameter D. In other words, A directly corre-
sponds to the number of neighboring processors (adjacent vertices in the graph
model), while D represents the length of the longest path in processor graph,
i.e. maximum distance between two processors. The main drawback of multiproces-
sor systems is the communication overhead [4, 35|, the time required to exchange
data between different processing units. Therefore, interconnection networks have
to satisfy two contradictory properties: to minimize the “number of wires” and to
maximize the data exchange rate. This means that the paths connecting each two
processors have to be as short as possible while the average number of connections
per processor has to be as small as possible.

Recently, the link between the design of multiprocessor topologies and the the-
ory of graph spectra [14] has been recognized [19]. The general idea of using graph
eigenvalues in multiprocessor interconnection networks can be also found in [30].
The main conclusion of [19] is that the product of the number m of distinct eigen-
values of a graph adjacency matrix and A has to be as small as possible. We
call this product the tightness of the first type for a graph. In [6] we introduced
the tightness of the second type as the product (D + 1)\, where Ay is the largest
eigenvalue of the graph. Moreover, we defined some other types of graph tightness,
and investigated the relation between the tightness values and the suitability of
the corresponding multiprocessor architecture. We showed that the graphs with
a small tightness of the second type are suitable for the design of multiprocessor
topologies.

In the paper [5] we determined explicitly graphs with tightness values not ex-
ceeding a = 9. To explain why the value 9 has been chosen, note first that by
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Theorem 1 the number of connected graphs with a bounded tightness is finite. If
the selected upper bound a is high, the number of corresponding graphs could be
very big and some of these graphs may have large number of vertices. It turned
out that the value a = 9 is very suitable: i) it is big enough to include the Petersen
graph (Fig. 13), known to be a very good interconnection network (see, for exam-
ple, [37]), and ii) it is small enough so that only 69 graphs obey the bound with
the number of vertices in these graphs not exceeding 10.

For basic definitions and some general results in the theory of graph spectra the
reader is referred to the introductory chapter of this publication.

The paper is organized as follows. Section 2 is devoted to relations between
the load balancing problem and the theory of graph spectra. Definitions and basic
properties of various types of tightness are given in Section 3. Section 4 contains a
survey of frequently used multiprocessor interconnection networks. Some results on
a special class of trees in the role of interconnection networks are given in Section 5.
Graphs with small values for different types of tightness are classified in Section 6.
Graphs with smallest tightness values (among all graphs of the same order not
exceeding 10) are identified within Section 7.

2. Load balancing

The job which has to be executed by a multiprocessor system is divided into
parts that are given to particular processors to handle them. We can assume that
the whole job consists of a number of elementary jobs (items) so that each processor
gets a number of such elementary jobs to execute. Mathematically, elementary jobs
distribution among processors can be represented by a vector x whose coordinates
are non-negative integers. Coordinates are associated to graph vertices and indicate
how many elementary jobs are given to corresponding processors.

Vector z is usually changed during the work of the system because some ele-
mentary jobs are executed while new elementary jobs are permanently generated
during the execution process. Of course, it would be optimal that the number
of elementary jobs given to a processor is the same for all processors, i.e., that
the vector x is an integer multiple of the vector j whose all coordinates are equal
to 1. Since this is not always possible, it is reasonable that processors with a great
number of elementary jobs send some of them to adjacent processors so that the
job distribution becomes uniform if possible. In this way the so called problem
of load balancing is important in managing multiprocessor systems. The load bal-
ancing problem requires creation of algorithms for moving elementary jobs among
processors in order to achieve the uniform distribution.

We shall present an algorithm for the load balancing problem which is based on
the Laplacian matrix of a graph. A similar algorithm can be constructed using the
adjacency matrix.

Let G be a connected graph on n vertices. FEigenvalues and corresponding
ortonormal eigenvectors of the Laplacian L = D — A of G are denoted by vy, vs,. ..,
v = 0 and uq,us, ..., u,, respectively. Any vector x from R"™ can be represented
as a linear combination of the form = = aju + asus + - -+ + apny,.
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Suppose now that G has distinct Laplacian eigenvalues pi1, o, . - ., i, = 0 with
multiplicities ki, ko, ..., k, = 1, respectively. Vector x can now be represented
in the form « = y; + y2 + -+ + Yy, where y; belong to the eigenspace of u; for
i=1,2,...,m. We also have y,, = 8j for some f.

Since Le = L(y1 + y2 + -+ + Ym) = pay1 + p2y2 + - -+ + fm¥Ym, we have (M) =
r— L+Lx = ( — iL)x = ( — %)yg + .-+ 4+ Bj. We see that the component of
x in the eigenspace of p; has been cancelled by the transformation by the matrix

- H%L while the component in the eigencpace of p,, remains unchanged. The

transformation I — H—IQL will cause that the component of z(2) = (I - H—IQL)x(l) in
the eigenspace of sy disappears. Continuing in this way

1
(1) 2 = (I——L)N*U, k=1,2,....m—1
Kk

we shall obtain z(™~1) = ;.
We have seen how a vector x can be transformed to a multiple of j using the

iteration process (1) which involves the Laplacian matrix of the multiprocessor
graph G. It remains to see what relations (1) mean in terms of load moving,.

Let vector (*) have coordinates x(lk), xék), e ,x;k). Relations (1) can be rewrit-
ten in the form
®) _ (=1 _ 1 (k=1) _ (k=1)
(2) o= e > (di% - )

ikj

where d; is the degree of vertex ¢. This means that the current load at vertex i is
changed in such a way that vertex (processor) ¢ sends u_lk'th part of its load to each
of its d; neighbors and, because this holds for every vertex, also receives l%k—th part
of the load from each of its d; neighbors.

In this way we have defined a load flow on the edge set of G. First, particular

amounts of load flow should be considered algebraically, i.e., having in mind their

sign. So, if :cz(k_l) is negative, then vertex ¢, in fact, receives the corresponding
amount. For each edge ij we have two parts of the flow: the part which is sent (or
received) by ¢ and the part which is sent (or received) by j. These two amounts
should be added algebraically and in this way we get final value of the flow through
edge ij. This flow at the end has a non-negative value which is sent either from 14
to j or vice versa.

Although the load flow plan defined in this way by relations (1) theoretically
solves the problem of load balancing, one should be careful when it has to be really
applied. This is not the only flow plan which solves the problem. For example, one
can apply relations (1) with various orders of eigevalues. Further, the flow plan that
we get could be such that the load is sent to final destinations via long paths. Also,
it is not clear that a flow plan is always realizable because it could happen that a
vertex has not enough elementary jobs to send which it should send according to the
flow plan. These facts indicate that one should further consider the load balancing
and find, if possible, flow plans which would be optimal according to some criteria.
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We shall not further elaborate the problem of load balancing and the interested
reader can consult the literature (see, for example, [19] and references given there).

Here we point out the obvious fact that the number of iterations in (1) is equal
to the number of non-zero distinct Laplacian eigenvalues of the underlying graph.
Hence we see that from the point of view of complexity of the load balancing algo-
rithms graphs with a small number of distinct Laplacian eigenvalues are suitable
for modelling multiprocessor interconnection networks. In addition, maximum ver-
tex degree A of G also affects computation of the balancing flow. Therefore, the
complexity of the balancing flow calculations essentially depends on the product
mA and that is why this quantity was proposed in [19] as a parameter relevant for
the choice and the design of multiprocessor interconnection networks.

Although graphs with few distinct eigenvalues allow a quick execution of load
balancing algorithms, it is not expected that infinite families of such graphs with
small tightness can be constructed.

A graph is called integral if its spectrum consists entirely of integers. Each
eigenvalue has integral eigenvectors and each eigenspace has a basis consisting of
such eigenvectors.

In integral graphs load balancing algorithms, which use eigenvalues and eigenvec-
tors, can be executed in integer arithmetics. The further study of integral graphs in
connection to multiprocessor topologies seems to be a promising subject for future
research (see [5, 9]).

See references [17, 18, 23, 26, 27] for a further study of the load balancing prob-
lem.

3. Various types of tightness of a graph

As we have already pointed out, the graph invariant obtained as the product of
the number of distinct eigenvalues m and the maximum vertex degree A of G has
been investigated in [19] related to the design of multiprocessor topologies. The
main conclusion of [19] with respect to the multiprocessor design and, in particular
to the load balancing within given multiprocessor systems was the following: if
mA is small for a given graph G, the corresponding multiprocessor topology was
expected to have good communication properties and has been called well-suited. It
has been pointed out that there exists an efficient algorithm which provides optimal
load balancing within m — 1 computational steps. The graphs with large mA
were called ill-suited and were not considered suitable for design of multiprocessor
networks.

Several families of graphs with a small product mA have been constructed. One
such family is based on hypercubes. It is interesting that the ubiquitous Petersen
graph appears also as a good candidate for multiprocessor interconnection networks.

On the other hand there are many known and widely used multiprocessor topolo-
gies based on graphs which appear to be ill-suited according to [19]. Such an
example is the star graph S, = Kj »_1.

In order to extend and improve the application of the theory of graph spectra
to the design of multiprocessor topologies, some other types of graph invariants
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(under common name tightness) have been defined in [6] and their suitability for
describing the corresponding interconnection networks investigated.

As we can see, mA is the product of one spectral invariant m and one struc-
tural invariant A. Therefore, we will refer to this type of tightness as the mized
tightness. In [6], we introduced two alternative (homogeneous) definitions of tight-
ness, the structural and the spectral one. Moreover, we introduced another mixed
tightness, and therefore we end up with type one mixed tightness and type two
mixed tightness. Here we recall all these definitions. New types of tightness in-
volve another structural invariant (diameter) and another spectral invariant (the
largest eigenvalue). Both invariants are important for communication properties of
a network in general.

Definition 1. The tightness t1(G) of a graph G is defined as the product of the
number of distinct eigenvalues m and the maximum vertex degree A of G, i.e.,

Definition 2. Structural tightness stt(G) is the product (D + 1)A where D is
diameter and A is the maximum vertex degree of a graph G.

Definition 3. Spectral tightness spt(G) is the product of the number of distinct
eigenvalues m and the largest eigenvalue A\; of a graph G.

Definition 4. Second type mized tightness to(G) is defined as a function of the
diameter D of G and the largest eigenvalue Ay, i.e., t2(G) = (D + 1)A;.

If the type of tightness is not relevant for the discussion, all four types of tightness
will be called, for short, tightness. In general discussions we shall use t1, t2, stt, spt
independently of a graph to denote the corresponding tightness. An alternative
term for tightness could be the word reach.

The use of the largest eigenvalue, i.e. the index, of a graph instead of the maxi-
mum vertex degree in description of multiprocessor topologies seems to be appro-
priate for several reasons. By Theorem 1.12 of [14] the index of a graph is equal
to a kind of mean value of vertex degrees, i.e. to the so called dynamical mean
value, which takes into account not only immediate neighbors of vertices, but also
neighbors of neighbors, etc. The index is also known to be a measure of the extent
of branching of a graph, and in particular of a tree (see [11] for the application in
chemical context and [10] for a treatment of directing branch and bound algorithms
for the travelling salesman problem). The index, known also as a spectral radius,
is a mathematically very important graph parameter as presented, for example, in
a survey paper [12].

According to the well-known inequality dmin < d < A\; < dmax = A, [14, p. 85]
we have that spt(G) < t1(G). Here dpin and dpax denote minimum and maximum
vertex degrees, respectively and d is used to denote the average value of vertex
degrees.

The relation between stt(G) and t1(G) is t1(G) = stt(G), since m > 1+ D (see
Theorem 3.13. from [14]). For distance-regular graphs [3] m = 1+ D holds.

We also have t2(G) < spt(G) and t2(G) < stt(G).



MULTIPROCESSOR INTERCONNECTION NETWORKS 41

The two homogeneous tightness appear to be incomparable. To illustrate this,
let us consider star graph with n = 5 vertices (S5 = K1,4) given on Fig. la, and
the graph S5 obtained if new edges are added to the star graph as it is shown on
Fig. 1b.

a) b)

FIGURE 1. a) Star graph with n = 5 vertices and b) extended star graph

From [14, pp.272-275, Table 1|, we can see that for S5 it holds D = 2, A = 4,
m = 3 and Ay = 2 and hence spt(S5) = mA; =6 < 12 = (D + 1)A = stt(S5). On
the other hand for the graph S5 we have D = 2, A =4, m = 4 and \; = 3.2361
yielding to spt(S5) > stt(S5).

The above mentioned table shows that this is not the only example. For n = 5,
21 different graphs exist. Only for 3 of them the two homogeneous tightness have
the same value, while stt(G) is smaller for 9 graphs, and for the remaining 9 graphs
spt(G) has a smaller value.

For two graph invariants a(G) and 5(G) we shall say that the relation a(G) <
B(G) holds if a(G) < B(G) holds for any graph G. With this definition we have
the Hasse diagram for the < relation between various types of tightness given on
Fig. 2.

t1(G)

/ AN

stt(G) spt(Q)

AN /

t2(G)
FIGURE 2. Partial order relation between different types of graph tightness

In order to study the behavior of a property or invariant of graphs when the
number of vertices varies, it is important that the property (invariant) is scalable.
Scalability means that for each n there exists a graph with n vertices having that
property (invariant of certain value).

A family of graphs is called scalable if for any n there exists an n-vertex graph in
this family. For example, in [19] the scalable families of sparse graphs (maximum
vertex degree O(logn)) with small number of distinct eigenvalues are considered.
Obviously, sometimes it is difficult to construct scalable families of graphs for a
given property.
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We present a theorem which seems to be of fundamental importance in the study
of the tightness of a graph.

Theorem 1. For any kind of tightness, the number of connected graphs with a
bounded tightness is finite.

Proof. Let t(G) < a for a given positive integer a, where ¢(G) stands for any kind
of tightness. In all four cases, we shall prove that there exists a number b such that
both diameter D and maximum vertex degree A are bounded by b. We need two
auxiliary results from the theory of graph spectra.

Having in view (1) and (2) from the introductory chapter of this publication,
t(G) < a implies

Case t(G) = t1(G). mA < a, m < aand A < a, D < a— 1, and we can adopt
b=ua;

Case t(G) = stt(G). (D+1)A <a, D <a—1and A < a, here again b = q;

Case t(G) = spt(G). mA; < a,m<aand \; <a, D<a—1,and A <\ < a?,
and now b = a®;

Case t(G) = t2(G). (D+1)A\; <a, D <a—1, and A < @?, and again b = a?.

&)

It is well known that for the number of vertices n in G the following inequality
holds

(3) n<I+A+AA-1)+AA -1 4+ AA-1)P7L.

To derive this inequality vertices of G are enumerated starting from a particular
vertex and adding maximum number of neighbors at particular distances from that
vertex. Based on this relation and assuming that both D and A are bounded by a
number b, we have

n<l+A+A?+ A+ AP ST+ A+ AT A 4 4 AP
SLHb+V 403+ + 0

In such a way we proved that the number of vertices of a connected graph with
a bounded tightness is bounded. Therefore, it is obvious that there can be only
finitely many such graphs and the theorem is proved. O

Corollary 1. The tightness of graphs in any scalable family of graphs is unbounded.

Corollary 2. Any scalable family of graphs contains a sequence of graphs, not
necessarily scalable, with increasing tightness diverging to 4o0.

The asymptotic behavior of the tightness, when n tends towards 400, is of partic-
ular interest in the analysis of multiprocessor interconnection networks. Typically,
in suitable (scalable) families of graphs the tightness values have asymptotic behav-
ior, for example, O(logn) or O(y/n). Several cases are studied in [6] and reviewed
also here in the next section.
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4. A survey of frequently used interconnection networks

In this section we survey the graphs that are often used to model multiprocessor
interconnection networks and examine the corresponding tightness values. Since
the tightness is a product of two positive quantities, it is necessary for both of
them to have small values to assure a small value of tightness.

1. An example of such a graph is the d-dimensional hypercube Q(d). It consists
of n = 2% vertices, each of them connected with d neighbors. The vertices are
labeled starting from 0 to n — 1 (considered as binary numbers). An edge connects
two vertices with binary number differing in only one bit. For these graphs we have
m=d+1, D=d, A =d, \; =d and all four types of the tightness are equal to
(d+1)d = O((logn)?).

Since the connection is fully symmetric, for the diameter we have D(Q(d)) = d.
The 1-, 2- and 3-dimensional hypercubes are illustrated on Fig. 3. 0

a) b)

F1GURE 3. The examples of hypercube multiprocessor topologies

2. Another example is butterfly graph B(k) containing n = 2¥(k + 1) vertices
(Fig. 4). The vertices of this graph are organized in k + 1 levels (columns) each
containing 2% vertices. In each column, vertices are labelled in the same way (from
0 to 2 —1). An edge is connecting two vertices if and only if they are in the
consecutive columns ¢ and ¢ + 1 and their numbers are the same or they differ
only in the bit at the i-th position. The maximum vertex degree is A = 4 (the
vertices from the two outer columns have degree 2 and the vertices in k — 1 inner
columns all have degree 4). Diameter D equals 2k while the spectrum is given in [19,
Theorem 11]. Therefrom, the largest eigenvalue is Ay = 4 cos(w/(k +1)). However,
it is not obvious how to determine parameter m. Therefore, we got only the values
stt = 4(2k+1) = O(logn) and to = 4(2k+1) cos(w/(k+1)) = O(k) = O(logn). O

Widely used interconnection topologies include some kind of trees, meshes and
toruses [28]. We shall describe these structures in some details.

3. Stars S, = Ki n—1 are considered as ill-suited topologies in [19], since the
tightness t1(Sy,) is large. However stars are widely used in the multiprocessor system
design, the so-called master—slave concept is based on the star graph structure. This
fact may be an indication that the classification of multiprocessor interconnection
networks based on the value for ¢; is not always adequate.
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FIGURE 4. The examples of butterfly multiprocessor topologies

For Sp,: m=3, A=n—1, D=2, )\ =+n— 1 and we have
t(Sh) = 3(n — 1),
stt(S,) = 3(n —1), spt(S,) =3vn — 1,
t2(S,) = 3vn — 1.

Stars are only the special case in more general class of bipartite graphs. The main
representative of this class are complete bipartite graphs K, », having vertices
divided into two sets and edges connecting each vertex from one set to all vertices
in the other set. For Ky, », we have m = 3, A = max{ni,na}, D =2, \; = \/niny
and hence

tl(Knl,m) - Stt(Knl,m) - 3max{n1) TLQ}’
Spt(Knlynz) = tQ(Knhnz) = 3\/ nina.

In the case ny = ny = n/2 all tightness values are of order O(n). However, for
the star S, we have t2(S,) = O(y/n). This may be the indication that complete
bipartite graphs are suitable for modelling multiprocessor interconnection networks
only in some special cases. O

4. Mesh (or grid) (Fig. 5a) consists of n = nyng vertices organized within layers.
We can enumerate vertices with two indices, like the elements of an n; X no matrix.
Each vertex is connected to its neighbors (the ones whose one of the indices is
differing from its own by one). The inner vertices have 4 neighbors, the corner
ones only 2, while the outer (but not corner ones) are of degree 3. Therefore,
A =4, D =nj+ny—2. Spectrum is given in [14, p. 74]. In particular, the largest
eigenvalue is \y = 2 cos(n/(n1 + 1)) +2cos(n/(n2 4+ 1)) and for the tightness of the
second type we obtain ty = (ny + ng2 — 1)(2cos(n/(n1 + 1)) + 2 cos(w/(n2 + 1))).
Hence, to = O(y/n) if ny = ns. O
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Ziviv,

a) b)

FIGURE 5. a) Mesh of order 3 x 4 and b) corresponding torus architecture

5. Torus (Fig. 5b) is obtained if the mesh architecture is closed among both dimen-
sions. We do not distinguish corner or outer vertices any more. The characteristics
of a torus are A = 4, D = [n1/2] + [n2/2]. Spectrum is given in [14, p.75]. In

particular, the largest eigenvalue is \y = 2cos(27/n1) + 2cos(27/nz) and thus
to = ([n1/2] + [n2/2] +1)(2 cos(2m/n1) + 2 cos(2m/n2)). As in the previous case (for
mesh) we have to = O(y/n) if n1 = no. O

All these architectures satisfy both requirements of designing the multiprocessor
topologies (small distance between processors and small number of wires). Those of
them which have a small value for ¢; are called well-suited interconnection topologies
in [19]. Other topologies are called ill-suited. Therefore, according to [19], well-
suited and ill-suited topologies are distinguished by the value for the mixed tightness
of the first type t1(G).

The star example suggests that t2(G) is a more appropriate parameter for se-
lecting well-suited interconnection topologies than ¢1(G). Namely, the classification
based on the tightness t; seems to be more adequate since it includes stars in the
category of well-suited structures.

The obvious conclusion following from the Hasse diagram given on Fig. 2, is
that the well-suited interconnection network according to the value for ¢; remain
well-suited also when ¢ is taken into consideration. In this way, some new graphs
become suitable for modelling multiprocessor interconnection networks. Some of
these “new” types of graphs are already recognized by multiprocessor system de-
signers (like stars and bipartite graphs). In the next section we propose a new
family of to-based well-suited trees.

5. Complete quasi-regular trees

In this section we shall study properties of some trees and show that they are
suitable for our purposes.

The complete quasi-regular tree T'(d,k)(d = 2,3,...,k = 1,2,...) is a tree
consisting of a central vertex and k layers of other vertices, adjacencies of vertices
being defined in the following way.

1. The central vertex (the one on the layer 0) is adjacent to d vertices in the
first layer.
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2. For any i = 1,2,...,k — 1 each vertex in the i-th layer is adjacent to d — 1
vertices in the (7 4+ 1)-th layer (and one in the (i — 1)-th layer).
The graph T'(3,3) is given in Fig. 6.

FIGURE 6. Quasi-regular tree 7'(3,3)

The graph T(d, k) for d > 2, hasn = 1+d((d—1)*—1)/(d—2) vertices, maximum
vertex degree A = d, diameter D = 2k and the largest eigenvalue Ay < d. (The
spectrum of T'(d, k) has been determined in [25]). We have k& = O(logn) and,
since t2(T(d, k)) = (D + 1)A < (D + 1)A = stt(T'(d, k)) = (2k + 1)d, we obtain
t2(T(d, k)) = O(logn). This is asymptotically better than in the hypercube Q(d)
case, where t2(Q(d)) = O((logn)?) or in the case for star graph where t5(K1 ,—1) =
O(y/n) (see Section 4). Note that the path P, with t2(P,) = 2ncos(r/(n + 1)) =
O(n) also performs worse.

The coefficient of the main term in the expression for t3(T'(d,k)) is equal to
d/log(d — 1) with values of 4.328, 3.641, 3.607, 3.728, 3.907, 4.111, 4.328 and 4.551
for d = 3,4,5,6,7,8,9,10, respectively. The coefficient is further an increasing
function of d. Therefore the small values of d are desirable and we shall discuss in
details only the case d = 3 since it is suitable for resolving the stability issues. The
other cases with small values for d can be analyzed analogously.

To examine the suitability of graphs T'(3, k), we compared its tightness values
with the corresponding ones for two interesting classes of trees: paths P, and stars
Sp = Ki -1 containing the same number of vertices n = 3 - 2k — 2. The results
for small values of k are summarized in the Table 1. 5.

Since for paths and quasi-regular trees the mixed tightness of the second type
has almost the same value as the mixed tightness of the first type, we put only the
values for the first type mixed tightness for paths, while for T'(n, k) the structural
tightness is given.

The last column (for stars) contains the values for two tightness, first for the
mixed tightness of the first type and then the value for the mixed tightness of the
second type in the parentheses.

As can be seen from the Table 1, the tightness values for paths P, are significantly
larger than the values stt(7'(3,%)). Star architecture seems to be better for small
values of k, but starting from k = 6, we have t2(T'(3,k)) < stt(T(3,k)) < t2(Sn).
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TABLE 1. Tightness values for some trees

k] n P, T(3,k) S,

ti(=ta) |stt(>t2) | 1 (t2)
1] 4 4.2 3-3 133 (3-V3)
201 10| 10-2 5-3 139 (3-4/9=3-3)
3| 22| 22-2 7-3 |3-21 (3-v21<3-5)
4| 46| 46-2 9-3 |3-45 (3-V/45<3-7)
50 94| 94-2 11-3 [3-93 (3-v/93<3-10)
6|190| 190-2 | 13-3 |3-189 (31189 > 3-13)
71382 3822 15-3 | 3-381 (3-v381>3-19)

The intention when comparing complete quasi-regular trees T'(3, k) with paths
P, and stars S, is to examine their place between two kinds of trees, extremal
for many graph invariants. In particular, among all trees with a given number of
vertices, the largest eigenvalue A\; and maximum vertex degree A have minimal
values for the path and maximal for the star, while, just opposite, the number
of distinct eigenvalues m and the diameter D have maximal values for the path
and minimal for the star. Since the tightness (of any type) is a product of two
graph invariants having, in the above sense, opposite behavior it is expected that
its extreme value is attained “somewhere in the middle”. Therefore, for a tree of
special structure (like the quasi-regular trees are) we expect both tendencies to be
in an equilibrium.

It is not difficult to extend the family of complete quasi-regular trees to a scalable
family. A quasi-reqular tree is a tree obtained from a complete quasi-regular tree
by deleting some of its vertices of degree 1. If none or all vertices of degree 1
are deleted from a complete quasi-regular tree we obtain again a complete quasi-
regular tree. Hence, a complete quasi-regular tree is also a quasi-regular tree. While
a complete quasi-regular tree is unique for the given number of vertices, there are
several non-isomorphic quasi-regular trees with the same number of vertices which
are not complete. Therefore, there are several ways to construct a scalable family
of quasi-regular trees. The following way is a very natural one.

Consider a complete quasi-regular tree T'(d,k) and perform the breadth first
search through the vertex set starting from the central vertex. Adding to T'(d, k—1)
pendant vertices of T'(d, k) in the order they are traversed in the mentioned breadth
first search defines the desired family of quasi-regular trees.

The constructed family has the property that each its member has the largest
eigenvalue A\; among all quasi-regular trees with the same number of vertices [34].
At first glance this property is something what we do not want since we are looking
for graphs with the tightness t; as small as possible. Instead we would prefer,
unlike the breadth first search, to keep adding pendant vertices to T'(d,k — 1) in
such a balanced way around that we always get a quasi-regular tree with largest
eigenvalue as small as possible. Such a way of adding vertices is not known and its
finding represents a difficult open problem in the spectral graph theory.
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A scalable family of trees with O((logn)?) distinct eigenvalues has been stud-
ied in [19]. An open question remains to compare the performances of these two
families.

In our context interesting are also fullerene graphs corresponding to carbon
compounds called fullerenes. Mathematically, fullerene graphs are planar regu-
lar graphs of degree 3 having as faces only pentagons and hexagons. It follows
from the Euler theorem for planar graphs that the number of pentagons is exactly
12. Although being planar, fullerene graphs are represented (and this really cor-
responds to actual positions of carbon atoms in a fullerene) in 3-space with its
vertices embedded in a quasi-spherical surface.

A typical fullerene Cg is given in Fig. 7. It can be described also as a truncated
icosahedron and has the shape of a football.

a)

FIGURE 7. a) Planar and b) 3D visualization of the icosahedral
fullerene Cgo

Without elaborating details we indicate the relevance of fullerene graphs to our
subject by comparing them with quasi-regular trees.

For a given number of vertices the largest eigenvalues of the two graphs are
roughly equal (equal to 3 in fullerenes and close to 3 in quasi-regular trees) while the
diameters are also comparable. This means that the tightness ¢4 is approximately
the same in both cases. In particular, the values of relevant invariants for the
fullerene graph Cgp are n = 60, D = 9 (see [21]), m = 15 (see [22]), A = A\; = 3.
Hence, stt = to = 30. A quasi-regular tree on 60 vertices has diameter D = 9 and
we also get stt = 30.

Note that the tightness ¢; is not very small since it is known that fullerene graphs
have a large number of distinct eigenvalues [22].

It is also interesting that fullerene graphs have a nice 3D-representation in which
the coordinates of the positions of vertices can be calculated from the eigenvectors
of the adjacency matrix (the so called topological coordinates which were also used
in producing the atlas [22]).

6. Graphs with small tightness values

In this section we classify graphs with small tightness values. In particular, we
find graphs with tightness values not exceeding a = 9.
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As explained in Introduction, it turned out that the value a = 9 is very suitable:
we established that exactly 69 graphs obey the bound with the number of vertices in
these graphs not exceeding 10 (see [5, 9]). The obtained graphs should be considered
as reasonably good models for multiprocessor interconnection networks. A more
modest task, finding graphs with tightness values not exceeding 8 is solved in [8].

We are interested in the 69 graphs given in Figs. 8-13 under names §,, , where

n (2 < n < 10) denotes the number of vertices and k > 1 (being a counter)

In Appendix, we give in Table 3 some data on these 69 graphs.

2,3 vertices

— N

Q2,1 Q3,1 Q3,2

4 vertices

q I I
—o oo
l::[ %
Q4 2 Q4 3 Q4 4 Q4 5 Q4 6

FiGURE 8. Graphs up to 4 vertices with small tightness

S e
@N@%&

Qa1

Q5,10
Q5,11 Q5,12 Q5,13 Q5,14 Q5,15

FIGURE 9. Graphs on 5 vertices with small tightness
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FaRea i SRS R
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Q6,11 Q6,12 6,13 Q6,14 Q6,15
[ ]
Q6,16 Q6,17 Q6,18 Q6,19

F1GURE 10. Graphs on 6 vertices with small tightness

D 0 G0
&1 50 > P ER

Q
Q7.6 Q7.7 e Q7.9 Q7,10
Q711 Q7,12 Q713 Q714 Q715

FiGURE 11. Graphs on 7 vertices with small tightness
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Q8,1 Qg,g Qg,g Q8,4
Qs 5 Qg6 Qs,7

FiGure 12. Graphs on 8 vertices with small tightness

Fd¥ &

Qlo,l Qlo,g
FiGURE 13. Graphs on 9 and 10 vertices with small tightness

The main result of [5] is the next theorem. In [5] only a sketch of a proof is
given. The proof is completed in [9].

Theorem 2. The only non-trivial connected graphs G such that t2(G) < 9 are the
69 graphs §, 1, depicted on Figs. 8-13.

Proof of Theorem 2. We have the following cases:

a®: D =1, A\; <4.5. We have complete graphs Q3 1, 23 1, Q4.3, 05 5.

b°: D = 2, A1 < 3. Denote the set of graphs satisfying these conditions by
Ai. According to (2) from the introductory chapter we have A < A2 < 9
and by formula (3) we get n < 1+ 9+ 98 = 82. For example, the star
Q10,1 € Ai. The set A; is completely determined in Lemma 2.

c®: D =3, \1 < 2.25. Denote the set of graphs satisfying these conditions by
As. Now, A < 5 since )\% < 6, and we haven < 1+5+5-4+5-42 = 106.
Graphs belonging to the set A, are listed in Lemma 3.

d°: D =4, \; < 1.8. Tt is easy to see that the only graph in this case is the
path Qs 12 (see information on Smith graphs in Section 2 of the introductory
chapter).

e®: D > 5, A\ < 1.5. There are no graphs satisfying these conditions.

To treat the cases b° and ¢° in Lemmas 2 and 3 we need an auxiliary result.
Let R be the set of graphs satisfying the conditions D =2, A = 3.
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Lemma 1. The set R consists of the following 17 graphs: Qa1, Qa5, Qa6, 5.4,
Qs6, 511, L6,2, 6,7, 6,9, 6,18, 6,19, Q7,2, 7,9, V710, V36, 8,7 and Qip,2.

Proof. By formula (3) graphs from R have at most 10 vertices. Consider a graph
G € R. Tt has a vertex v of degree 3. Let f be the number of edges in the subgraph
of G induced by the three neighbours of v. We have the following possibilities:

If f =3, we have G = Q4 3 which is excluded since D = 1.

Consider f = 2. Now we start from vertex v and its neighbours and add new
vertices and edges in such a way that conditions D = 2, A = 3 are not violated.
We readily get G = Qu 6, or G = {1517 given on Fig. 9, or G is isomorphic to Qg9
from Fig. 10.

In the case f =1 the obtained graphs up to 7 vertices are presented on Fig. 14.
Finally, we get the graph Qg ¢ from Fig. 12 on n = 8 vertices.

ST

Q6,18 Q7.9 Q79

FIGURE 14. Some graphs from the set R

If f =0, we first have complete bipartite graphs 4 1, €254, and ¢ 19, and g 2.
For n = 7 we again come across graph {172, and the graph €7 19. For n = 8 the
graphs g, 2s7 from Fig. 12 appear. The Petersen graph 9.2 on 10 vertices
belongs here. There are no graphs on 9 vertices. (]
Lemma 2. The set Ay consists of 52 graphs given below.

n=3: Q32;

n=4: Q41, Q2, Q46, Q45;

n=>5: Qs51, W52, Ns53, V5.4, U556, 5.7, 5,9, V511, 5,13, O5,15;

n==6: 1, Q6,2, 6,3, e,6: 6,7, 6,9, 6,10, 6,11, 26,12, 6,14,
Q6,15, 6,16, 26,18, 6,19;

n="T: Qr1, Qr2, Qra, Qr5, Qr6, Qr.7, Q79, Q7.10, Q7,11, Q7133
Q7.14, Q715;

n=28: g1, 2, 83, N4, 5, 86, (a,7;

n=9: Q1, Qgo;

n=10: Qo1, Qo2 (the Petersen graph).

Proof. We shall first prove that there are no graphs on n > 10 vertices with diameter
2 and index less than or equal to 3.
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Assume to the contrary that G is a graph on n > 10 vertices such that diam(G) =
2 and A\ (G) < 3.

We first claim that A(G) < 8. Otherwise, if A(G) > 9 then A\ (G) > A\ (Sat1) =
VA > 3, a contradiction. If §(G) = 1, let v be a pendant vertex G, and w its
neighbour. Since the eccentricity of v is at most 2, w must be adjacent to all
vertices of GG, but then n < 10, a contradiction.

Therefore, we can assume further on that 6(G) > 1 and A(G) < 9. Let e be the
number of edges of G. Then,

3> M(G) > Z_g
n
and the average vertex degree is less than or equal to 3, with equality if and only
if G is regular. If G is 3-regular graph with diameter 2, by (4) G can have at most
1+ 3+ 3-2 =10 vertices, a contradiction.

So the average vertex degree of G is less than 3, and since none of them is of
degree 1, nor all are of degree 3, there exists at least one vertex in G, say u, of
degree 2. Denote with v and w its neighbours. Let the remaining vertices (n — 3
in total) be partitioned as follows: A contains the vertices that are adjacent only
to v; B contains the vertices that are adjacent only to w; C' contains the vertices
that are adjacent to both, v and w. If so

IA|+|C| <7 and  |B|+|C|<7.

Since |A| 4+ |B| +|C| =n — 3 and n > 10, we have |A| > 0 and |B| > 0.

Let all edges incident to v or w be coloured in blue, while the other edges, non-
incident to v or w (incident only to vertices from A U B U C') be coloured in red.
Let e, and e, be the number of blue and red edges in G, respectively. Clearly,
ep =n—1+]|C|.

We now claim that e, > |A| + |B| — 1. To see this, assume first that H =
(AU B UC) (the subgraph induced by the vertex set AU B U C) is connected.
Then, e, > |A|+|B|+|C|—1 > |A| 4+ |B| — 1 and we are done. Let x and y be the
vertices belonging to different components of H. Since G is of diameter 2, there is
a vertex z adjacent to both vertices « and y. Clearly, z # u (otherwise, if z = u
then © = v and y = w, a contradiction). If z € AU BUC, then = and y are not in
different components of H. So z = v or z = w. If z = v then x,y € AU C; while if
z =w then z,y € BUC. It follows that all vertices from the sets A and B are in
the same component of H (since x and y cannot belong to AU B), and therefore
er = |A| + |B| — 1, as required.

Consequently, we have

3n

5 ze=e+e =>(n—1+|C))+ (|4 +|B|—-1)=2n-5.

But this is equivalent to n < 10, a contradiction.
Hence, there are no graphs on n > 10 vertices with diameter 2 and index less
than or equal to 3.
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By an exhaustive search of connected graphs up to ten vertices one can verify that
only the 52 graphs, quoted in the statement of the lemma fulfill the requirements.
O

Remark 1. (i) The exhaustive search in [5] was performed by the program nauty.

We used publicly available library of programs nauty [29] to generate all con-
nected graphs with up to 10 vertices. nauty is a program for computing auto-
morphism groups of graphs and digraphs. It can also produce a canonical graph
labelling. nauty is an open source available function library written in a portable
subset of C, and runs on a considerable number of different systems. We used
its functions for generating all connected graphs on a given number of vertices.
The implemented algorithm for generation of graphs is very efficient and provides
a compact representation which is not readable by ordinary users. nauty library
also provides several functions for converting this compact representation into “user
friendly” form.

(ii) Another possibility to find the 52 graphs from Lemma 2 is to use computer
assisted reasoning.

Graphs up to 7 vertices can be found using existing graph tables [15, 16] (up to
6 vertices), [13] (7 vertices).

Using an interactive graph package we follow the effect of adding vertices and
edges to the largest eigenvalue A;. (We have used the package newGRAPH available
at the address http://www.mi.sanu.ac.rs/newgraph/.)

If A =k, then there exists a subgraph in the form of the star Si1.

If A =9, the only solution is Q19,1 = Sio, in all other cases A; > 3.

If A =8, only one edge can be added and we get g1 = Sg and Qg 2. Adding a
vertex yields A1 > 3.

If A =7, at most two edges can be added and we get Qg1 = Sg, {2g 2 and Qg 5.

If A = 6, addition of at most three edges is possible and we get Q71 = S7, Q75,
Qr7, Q7.11, Q7,15.

If A =5, again by adding at most three edges we get Qg1 = Sg, 6,3, Q6.6,
Q6,12, 26,15. Now adding vertices in a specific way is possible and we get 2g 4.

If A =4, we get {23 3 and graphs with less than 8 vertices can be found by graph
tables.

The case A = 3 is covered by Lemma 1, while the cases A < 3 are trivial.

Lemma 3. The set Ay consists of 12 graphs listed below.
n=4: Qu4; n=>5: (5, 510, 2514;

n=06: Q¢a, Qs5, Q6,8, 6,13, 6,17; n="7: $r3, Qrg, Q712.

Proof. By Table 3 given in Appendix the above 12 graphs clearly belong to the set
As. We shall show that no other graphs H belong to As.

Maximal degree of H cannot be at least 5 since in this case H would contain Sg
with an additional vertex (since D = 3). Such a subgraph would have A\; > 2.25
which is forbidden.

If A =4, H contains a subgraph isomorphic to S5. We cannot add an edge to
S5, since then we obtain Q5 3 with A\; > 2.25 (see Table 3). However, S5 can be
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extended with new vertices to graphs {2 g and €27 5. No other extensions of vertices
and edges are feasible.

Next we have to consider the case A < 3. Now formula (3) gives that H can
have at most 10 vertices which completes the proof using Lemma 1. ([l

This completes the proof of Theorem 2.

Let G, be the set of connected graphs with at least two vertices. Let us introduce
the following notation:

T¢ ={G:G€G., t1(G)<a}, T ={G:Gegq,., stt(G) < a},
T3, ={G:G €., spt(G) <a}, T§={G:Geq., t2(G) <a}.

It is obvious that T} C T, C Ty and T C Tg,, C Ty because of the partial order
between tightness values given on Fig. 2.
Using Table 3 from Appendix we can immediately verify the following corollaries

of Theorem 2.

Corollary 3. The only non-trivial connected graphs G such that t1(G) < 9 are 14
graphs € ;, where (i, j) is:

(2,1), 3,1), (3,2), (4,5) (j €{1,...,4}),
(5,7) (4 €{2,4,8}), (6,4), (6,19), (7,3), (10,2).

Corollary 4. The only non-trivial connected graphs G such that stt(G) < 9 are 27
graphs € ;, where (i, j) is:
(27 1)’ (37 1)) (37 2)) (4)j) (j E {1) A 76})) (5’j) (j E {2) 47 6) 87 11})

(6,5) (7 €{2,4,7,9,18,19}), (7,j) (j € {2,3,9,10}), (8,6),(8,7),(10,2).
Corollary 5. The only non-trivial connected graphs G such that spt(G) < 9 are
21 graphs ;. ;, where (i, ) is:

(2,1), 3,1), (3,2), (4,5) (G €{1,...,5}), (5,J) (
(6,5) (7 €{1,4,14,19}), (7, 1), (7,3), (81

Corollaries 1-3 have been proved in [5] in another way.

j€{1,2,4,8,}),
), (10,2).

Remark 2. In fact in [5] we have proved that T9 = QUR'US’UV’, where T} = Q,
TS%t = Q U R/a ngpt = Q U S/ and |T29| = 69.
Here we have

Q = {K27 K37 K4; K57 P3; P4; C47 C57 CG; C7; K1,37 KQ,?); K3,3; PG}v

S ={Ps,K14,K15, K16, K17, K18, K19},

R' ={Qu45, 06,056, 05,11, .2, V6,7, 6,9, V6,18, 7,2, Q7,9, V7,10, 5,6, V5.7 }
and V' consists of the remaining 35 graphs. Here, PG denotes the Petersen graph.
We see that the sets @ and S’ (related to tightness ¢; and spt) contain only the

standard graphs. When considering stt and ¢, the graphs with non-standard names
occur.
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7. Graphs with smallest tightness values

One of the goals in this work is to identify graphs with smallest tightness values
for all four types of tightness.

Based on Corollary 1 of Theorem 2 we are in a position to find the best config-
urations w.r.t. t; up to 10 vertices.

Theorem 3. Among connected graphs G on n (n < 10) vertices the value t1(G) is
minimal for the following graphs:

K5 forn =2, Cs forn =25, Cg forn =38,
K3 for n =3, Cs for n =6, Cy forn =29,
Ky forn =4, C7 forn=1, the Petersen graph for n = 10.

Proof. By Theorem 2, all connected graphs G with ¢, (G) at most 9 are known.
Among them it is easy to identify graphs with minimal tightness for n < 7 and
n = 10. The cases n = 8,9 remain. Since m and A are both integers, the next
unexamined value for ¢; is ten. We easily find that for Cs and Cy, having m = 5
and A = 2, tightness value t; = 10. O

In a similar way we can identify extremal graphs for other types of tightness
based on the results presented in the previous section. The obtained graphs are
summarized in Table 2. Together with extremal graphs, the corresponding tightness
values are given in parentheses.

TABLE 2. Minimal graphs with their tightness values

n t1 stt spt to

2| K> (2) K> (2) K> (2) K> (2)

3| K5 (4) K3 (4) K; (4) K; (4)

4| K4,C1 (6) | Ka,Cs (6) Sy (5.196) | 54 (5.196)
5] Cs (6) Cs (6) Cs, 85 (6) | Cs, 55 (6)
6 Cs (3) Cs ) S5 (6.708)) | Se (6.708))
-3 1Cr (®) S, (7.318) | Sy (7.348)
8| Cs (10) | N(3,6660), N(8,8469) (9) | Ss (7.937) | Ss (7.937)
9] Co (10) | Cs (10) Sy (8.485) | S (8.485)
0 PG ©O) | PCO) PG, S0 (9) | PG, S1o (9)

Several interesting observations can be made.

For n = 2 and n = 3 complete graphs (in a trivial way) are minimal graphs
for all four types of tightness. Starting from n = 4, tightness spt and to start to
suggest stars as best interconnection networks while tightness t; and stt start to
suggest circuits as the best ones. Surprises come for n = 8 and n = 10.

For n = 8 according to the tightness stt we get two cubic graphs N(8,6660) and
N (8,8469) (graphs in which all vertex degrees are equal to 3) of diameter 2. These
graphs break the circuit sequence of minimal graphs for stt. They also represent
the only case (among small graphs) when ¢; and stt have different minimal values.
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For n = 10 the Petersen graph (PG) appears in all four cases. It is also a cubic
graph of diameter 2. In addition, it is strongly regular, which means that any
two adjacent vertices have a fixed number (0 in this case) of common neighbors
and any two non-adjacent vertices have a fixed number (1 in this case) of common
neighbors. Such an extraordinary structure is the reason why the Petersen graph
appears frequently in graph theory as example or counterexample in numerous
studies. Here it appears that the Petersen graph should be considered as a very
good multiprocessor interconnection network. It is also remarkable that tightness
t; and stt cannot be smaller than 10 for n = 9 and that only with one vertex more,
when n = 10 their value can become 9 for the Petersen graph.

However, by tightness spt and to, the star on 10 vertices is as equally good
topology as the Petersen graph.

The results for spt and to perhaps suggest that stars are candidates for optimal
topologies in general. However, such a conclusion is correct only for small graphs.
In [6] it was shown that stars have tightness spt and ¢ asymptotically equal to
O(y/n) while hypercubes have equal values for all four types of tightness with
asymptotical behavior O((logn)?). On the other hand, 3-dimensional hypercube
seems to be less suitable not only than the star Sg; N(8,6660), N(8,8469), Cs and
some other graphs also have smaller tightness values. Moreover, graphs N (8, 6660)
and N(8,8469) provide a smaller diameter with the same maximum vertex degree.

The problem of finding graphs with the smallest tightness values for a given
number of vertices remains open in general.
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Appendix

The Table 3 given below contains some relevant data about 69 graphs with
second type mixed tightness not exceeding 9.

Graphs are ordered first by n (the number of vertices), and within the groups
with fixed n, by t3. Columns of the table provide graph name, the number of
vertices 1, the number of edges e, the name(s) under which the graph appeared in
[5], diameter D, maximum vertex degree A, the number of distinct eigenvalues m,
the spectrum starting with the largest eigenvalue \;. Last four columns contain
the values of the four types of tightness ¢, stt, spt, to.

As “the old names” we used different notation. First we distinguish the well
known graphs such as complete graphs, circuits, stars, complete bipartite graphs,
and so on. For graphs up to 5 vertices we used the notation from [14], while graphs
on n = 6 vertices are marked primarily as in [15]. N(n,j) denotes the j-th graph
on n vertices generated by program nauty. PG denotes the well known Petersen
graph.
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Silvia Gago

SPECTRAL TECHNIQUES
IN COMPLEX NETWORKS

Abstract. Most physical, biological, chemical, technological and so-
cial systems have a network structure. Examples of complex networks
range from cell biology to epidemiology or to the Internet. In the re-
cent years, several models of complex networks have been proposed,
as the random graph of Erdds and Rényi, the small-world model of
Watts and Strogatz or the scale-free networks of Barabési and Albert.

The topological structure of such networks can be fully described
by the associated adjacency matrices and their spectral density. The
rich information about the topological structure and diffusion pro-
cesses can be extracted from the spectral analysis of the networks.
For instance, the power-law behavior of the density of eigenvalues is
a notable feature of the spectrum of scale-free networks. Dynami-
cal network processes, like synchronization can be determined by the
study of their Laplacian eigenvalues. Furthermore, the eigenvalues
are related to many basic topological invariants of networks such as
diameter, mean distance, betweenness centrality, etc.

Spectral techniques are also used for the study of several network
properties: community detection, bipartition, clustering, design of
highly synchronizable networks, etc.

Mathematics Subject Classification (2010): Primary: 05-02, 05C50

Keywords: algebraic connectivity, complex networks, eigenvalue
distribution, synchronization, community structure.
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1. Introduction

Complex networks are everywhere. They are formed by a large set of vertices
representing the entities of the system, and a set of edges, representing the interac-
tions between their elements. Examples of complex networks include the Internet,
World Wide Web, social networks of acquaintances or other connections between
individuals, distribution networks such as postal delivery routes, neural networks,
food webs, metabolic networks, networks of citations between papers, organiza-
tional networks and networks of business relations between companies, and many
others (see Fig. 1). In the recent last years, two classes of complex networks have
aroused a great deal of interest in the literature: small-world networks and scale-free
networks, as many real networks exhibit characteristics of both classes.

The spectrum of the adjacency and Laplacian matrices provide a great deal of
information about the structure of a network. As usual, the eigenvalues of the
adjacency matrix are denoted by A;, 1 < ¢ < n. Recall that the Laplacian matrix
of a graph is a symmetric matrix L whose diagonal elements [;; are the degrees of
the vertices, and whose off-diagonal elements /;; are —1 if the vertex v; is connected
to v;, and 0 otherwise. More precisely, if D is the diagonal matrix of vertex degrees
d; and A is the adjacency matrix of the graph, L = D — A. Note that L is semi-
positive definite, 7 Lz > 0 for any vector x, its first eigenvector is j = (1,...,1)7
corresponding to the first eigenvalue 1 = 0, and the second largest eigenvalue 65 is
called the algebraic connectivity or Fiedler value, because its proximity to 0 reveals
whether the graph can be easily disconnected. Its corresponding eigenvector vs is
also known as the Fiedler vector, and is essential for the bisection method. The
Laplacian spectrum is denoted by

sp(L) ={0< 0 <...<6,}.
64
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FIGURE 1. A complex network: a picture of the World Wide Web,
from Hal Burch and Bill Cheswick, Lumeta Corp.

The normalized Laplacian matrix is introduced by Chung and defined as the
symmetric matrix £ whose diagonal elements [;; are 1, and whose off-diagonal
elements I;; = —1/+/d;d; if the vertex v; is connected to v;, and 0 otherwise. Its
relation with the Laplacian is given by £ = D~Y/2LD~1/2,

Several topological parameters are considered for the study of complex networks.
Some of them are well known in graph theory, like the diameter, mean distance,
isoperimetric number, maximum and minimum degree and edge connectivity.

The edge connectivity, e(G), of a graph G is the minimum number of edges
which must be deleted in G to disconnect it. The minimum and mazimum degree
of the graph are denoted by § and A respectively. Denoting by d(u,v) the distance
between two vertices u,v € V(G) (the length of the shortest path), the diameter is
D = max,, vev d(u,v), and the mean distance or average path length is

- 2
= m Z d(u, U).
(u,)eV(G)

The graph diameter provides an inverse measure of the vertex connectivity. In-
tuitively, we can say that two vertices in a network are weakly connected if their
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shortest connection passes through many other vertices. When this happens for all
pairs of nodes, the diameter D of the graph is large.

The isoperimetric number of a graph is introduced by Mohar in [42] as the
number i(G) = min x| <z [6X|/|X]|, where X is a subset of vertices, 6X is the
boundary of X, i.e., the set of edges in G between vertices in X and vertices not
in X. It is a measure of whether or not a graph can be split in two subgraphs
of the same cardinality. In the same paper there are two different bounds for the
isoperimetric number.

New parameters and tools are also considered to characterize properties of these
new networks, like the degree distribution, eigenvalue distribution, spectral density,
clustering parameter and betweenness centrality.

Clustering parameter. Let e; be the number of edges connecting the neighbors of
a vertex u; of degree ¢;, then the clustering coefficient of u; is C; = 2e;/6;(6; — 1),
for any 1 < ¢ < n, and the clustering coefficient or parameter of the graph G is

defined as
1 n
C= - ;,1 C;.

Power-laws distributions. A power-law function follows the polynomial form
f(x) = ax™", where a,v are constants and 7 is called the power-law exponent.
This kind of distribution was previously known as Pareto distribution or Zipfs
law. The main property of power laws is their scale invariance, i.e., any scaling
of the argument = by a constant factor causes only a proportionate scaling of the
function itself, i.e., f(cz) = a(cx)™ = ¢V f(z) x f(x), which means that they are
proportional and therefore it preserves the shape of the function itself. Moreover,
by taking logarithms a linear relation is obtained log f(x) = loga — ylogz. A
network with degree power law distribution is called scale-free.

Spectral density. Given a graph G of order n, and adjacency matrix eigenvalues
Ai, 1 < i < n, the spectral density of the graph is defined as

1 1, ifz=0,
plz) = - 25(33 —j), where d(x)= { 0, ifxz#0.
=

is the Kronecker or delta function.

Betweenness centrality. Vertex betweenness centrality was introduced by a so-
ciologist Freeman [29] in 1977, as a measure of the importance of a vertex in a
network. Since the appearance of complex networks it has become an important
parameter to study networks features [45], generalizing the concept for edge be-
tweenness centrality. Spectral bounds for either the vertex betweenness and edge
betweennes of a graph are studied in [15], and more general properties can be found
in [32]. The mazimum betweenness centrality, Bmax, is also considered for studying
several aspects of the network, as its synchronization capability (Section 3), or used
for performance of bisection methods (Section 4).

To be more precise, if o,,(w) denotes the number of shortest paths from ver-
tex u to vertex v that go through w, and oy, is the total number of shortest
paths from u to v, then by, (u,v) = oyy(w)/0uy. The betweenness of a vertex w is
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By =3, ptw bw(u,v). The betweenness centrality of a graph G of order n is

- 1

B=- Bua
and the maximum betweenness of the graph G is Byax = max{B, | v € V'}. The
mean betweenness B is closely related with the mean distance [ of the graph as
B = (n—1)(I—1) [15]. The same parameters can be defined for edges, and the
most used one is the maximum edge betweenness centrality, BF.

2. Internet graph models and their spectra

Traditionally networks have been described by either regular graphs or random
models like the classical model of Erdés—Rényi [22]. The later consists of a graph on
n vertices, G(n, p), where the vertices are connected between them with probability
p. In particular the distribution of the degree of any particular vertex v is binomial

P(d, = k) = (Z)p’“(l —p)" k.

1-? =] Di B d & g - : I, .
o8l * Clp)/co)y b ]
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! . :
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FIGURE 2. Watts and Strogatz small-world model. The diagram
represents the rewiring probability p versus normalized mean dis-
tance | and clustering parameter C. Observe that as p increases,
both [ and C decrease. However, [ decays faster than C, which
allows a probability region, 0.01 < p < 0.1, where [ is a small and
C is still high.

However, the appearance of new networks like the Internet graph, which could
not be reproduced by these classical models, motivated Watts and Strogatz to intro-
duce a new model for describing them [60]. They observed that such networks have
a small diameter or mean distance as the former, and a large clustering parameter,
as the later. Sparse random graphs have a small clustering coefficient while real
world networks often have a coefficient significantly larger.
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The model proposed by Watts and Strogatz starts from a regular graph with a
large clustering parameter, which is transformed into a small world graph by the
random reconnection of only a small number of edges, as the diameter is drastically
reduced while the clustering coefficient of the regular graph remains large (see
Fig. 2).

Since the appearance of this breakthrough a large number of stochastic and
deterministic models have been appearing in the literature. For more information
about them we refer the reader to the surveys [6] and [14].

In 1999 Faloutsos, Faloutsos and Faloutsos [25] made an experimental study of
one part of the Internet graph, obtaining power laws in the distribution of many
of the different parameters of the network, as the vertex degrees or the adjacency
matrix eigenvalues. A typical value for the degree power-law exponent in real
networks is 2 < v < 3. For obtaining the eigenvalue power-law, the eigenvalues
A; of the adjacency matrix are sorted in decreasing order and plotted versus the
associated increasing sequence of numbers ¢ representing the order of the eigenvalue
(see Fig. 3). A similar relation has been recently obtained for the normalized
Laplacian eigenvalues in [53] and for the weighted Laplacian and the weighted
adjacency matrix in [38]. Former experimental studies indicate that the power
law exponents have not changed over the years in spite of the exponential network
growth [34, 52].

10000 100
P1.0regon’  + ‘P3.0regon’  +
exp(6.8968) *x**(-0.7444) exp(4.3031) "x**(-0.47734)
-
1000 | g T,
E by,
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g 100 10| |
ki E 10
=
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£
10 -
1 , . . " 1 .
1 10 100 o 1000 10000 100000 1 10 i 100

F1GURE 3. Power law distributions at the AS level Oregon Internet
network, from [25]. On the left it is represented the histogram
of 10000 highest vertex degrees and on the right the 100 largest
eigenvalues versus their order, both in a log-log scale.

Mihail et al. in [41] found a surprising relationship between the degree and the
eigenvalue exponents: the eigenvalue exponent is approximately half of the degree
exponent. This fact indicates that the first largest eigenvalues are the square root
of the first largest degrees. They also claimed that the eigenvalue distribution
is a consequence of the degree distribution. However, in [31] it is proved by the
construction of a deterministic model based on direct products of star graphs that
the eigenvalue power-law is not a consequence of the degree power-law.
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Among the scale-free models the most studied one is proposed by Barabési and
Albert in 1999 [2]. The model is based on two observed facts in real networks:
networks expand continuously by the addition of new vertices, and new vertices
attach preferentially to sites that are already well connected. They used the so-
called preferential attachment model. The model starts with a small number of
vertices mg at step ¢ = 0, and at every time step a new vertex u is connected to
m < my vertices of the existing graph. The probability of the new vertex u of being
connected to an existing vertex u; depends on its degree d;, i.e.,

Zjdj’

The Barabasi—Albert model produces a degree power-law distribution with expo-
nent v = —3, meanwhile the Watts and Strogatz and the Erdés-Rényi follow a
Poisson distribution. This means that vertices with higher degree have stronger
ability to grab links added to the network.

The main tool used for studying the spectra of large complex networks is the
spectral density p(A). For a uncorrelated random graph, a graph where the prob-
ability for any pair of its vertices being connected is the same, p, and where these
probabilities are independent variables, the adjacency matrix A is a real symmet-
ric n X n uncorrelated random matrix, i.e., FA;; = 0 and EAfj = ¢. For this
matrix, the limit of the spectral density when n — co converges to a semicircular
distribution (if rescaled as A’ = A[np(1 — p)]~%/2 o< An~1/2)

p(A,)_{ @2m) WA= N2, if [N < 20,

0, otherwhise.

p(u is connected to u;) = p; = forl << m.

This theorem is known as Wigner’s semicircular law [61]. Surprisingly, the semi-
circular spectral density is not valid for any realistic graph models.

The spectrum and the corresponding eigenvectors of the Barabasi and Albert
model have been studied by Goh et al. in [35] obtaining that the distribution of
the spectra is quite far from a semicircle. The eigenvalues decay exponentially
around the center and have power-law long tails at both edges. The same result
was obtained by Farkas et al. in [26], where the spectral density of both Watts
and Strogatz and Barabdsi and Albert models are studied, finding that they have
a special shape. In particular, scale-free graphs develop a triangle-like spectral
density with a power-law tail when plotted in log-log scale (see Fig. 4), while small-
world graphs have a complex spectral density consisting of several sharp peaks
(Fig. 5). They also found that the eigenvalues A\; and |\,| depend on n as n'/4
for large n, and that the eigenvector corresponding to the largest eigenvalue is
strongly localized at the vertex with the largest degree and is independent of the
system size n.

Nevertheless, Chung et al. [11] showed that, depending on the matrix, under a
certain mild condition (that the minimum expected degree is significantly larger
than the square root of the expected average degree), the eigenvalues of the nor-
malized Laplacian of a random power-law graph follow the semicircle law, whereas
the spectrum of the adjacency matrix of a power-law graph obeys the power law.
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FIGURE 4. The spectral density of a Barabasi-Albert graph with
m = 5, and n = 7000 has a triangle-like shape compared with
the semicircle, with a power-law decay in both sides. The isolated
peak corresponds to the principal eigenvalue. In the upper corner
the power-law decay is represented in a log-log scale. (from [26])

Furthermore, it has been reported that the k largest eigenvalues of the adjacency
matrix of random power-law graphs have a power-law distribution (provided that
the largest k degrees are large in the terms of the second-order average degree)
[11, 26, 35, 41]. The k largest eigenvalues and eigenvectors have several applica-
tions in complex networks, as the search of clusters or communities (Section 4).
For instance, Gkantsidis et al. [34] performed a comparison of clustering coeffi-
cients using the eigenvectors of the k largest eigenvalues of the adjacency matrices
of Autonomous Systems (AS) topologies, where k is chosen to retain the strongest
eigenvectors discarding most of the others. These and further results indicate that
the spectra of correlated graphs represent a practical tool for graph c